
Log Frequency Analysis for Anomaly Detection in
Cloud Environments at Ericsson

Prathyusha Bendapudi
Blekinge Institute of Technology

Karlskrona, Sweden
prbe21@student.bth.se

Vera Simon
Ericsson

Aachen, Germany
vera.simon@ericsson.com

Deepika Badampudi
Blekinge Institute of Technology

Karlskrona,
Sweden

deepika.badampud
i@bth.se

Abstract—Log analysis monitors system behavior, detects er-
rors and anomalies, and predicts future trends in systems and
applications. However, with the continuous evolution and growth
of systems and applications, the amount of log data generated on a
timely basis is increasing rapidly. This causes an increase in the
manual effort invested in log analysis for error detection and root
cause analysis. The current automated log analysis techniques
mainly concentrate on the messages displayed by the logs as one of
the main features. However, the timestamps of the logs are often
ignored, which can be used to identify temporal patterns between
the logs which can form a key aspect of log analysis in itself. In this
paper, we share our experiences of combining log frequency based
analysis with log message based analysis, which thereby helped in
reducing the volume of logs which are sent for manual analysis for
anomaly detection and root cause analysis.

Index Terms—Log Analysis, Log Frequency Patterns, Anomaly
Detection, Machine Learning, Cloud Environments

I. INTRODUCTION

Software logs have been widely employed in a variety of
reliability assurance tasks because they are some of the main
sources of information available that record software run-time
information. System logs are essential for various reasons,
especially for monitoring and troubleshooting in a given
computing environment [7]. However, the exponential growth
of log data presents challenges for manual analysis, leading to
the development of automated log analysis tools that enhance
efficiency and effectiveness.

Traditional methods of detecting anomalies in logs involve
using manual techniques such as searching for specific key-
words (such as “failed”, “exception”, and “error”) or match- ing
rules to identify potentially problematic logs associated with
system issues [2]. However, with the growing volume and
variety of logs generated by modern software systems, these
manual approaches are becoming increasingly impractical due
to their labor-intensive nature [2].

Automated log analysis tools for different phases such as
logging, log compression, log parsing, and log mining exist [5].
In the log mining phase, statistics, data mining, and machine
learning techniques can be employed for automatically
exploring and analyzing large volumes of log data to obtain
meaningful patterns and informative trends. In existing log
analysis techniques, the log analysis is primarily based on log
messages [5]. Little consideration

is given to the timestamps of the logs, which might also serve
as an important source of information with regard to the
temporal pattern displayed by a set of logs [1]. Few solutions
focused on identifying temporal patterns using deep learning
methods in log analysis [3, 1]. However, the time frequency
patterns displayed by the logs were not correlated to the
processes indicated by these logs and the messages displayed
by the logs. Baril et al. developed a new model that captures
temporal deviations by means of a sliding window data
representation [1]. However, the model they developed used a
semi-supervised learning approach, where new temporal
patterns were compared to past temporal patterns, which were
devised to be ‘normal’ and anomalies were predicted based on
the deviation between old and new temporal patterns. Due to
the continuous evolution of software processes and ever-
changing patterns in log occurrences, an unsupervised learning
approach could be beneficial for log-based anomaly detection.
Ericsson developed an AI-assisted tool, Lexicon, for au-
tomated log based anomaly detection and root cause analy- sis
in 5G Cloud network infrastructure. By employing ma- chine
learning algorithms like clustering and TF-IDF (term
frequency-inverse document frequency), Lexicon automates
anomaly detection and root cause identification based on log
messages (identifier-based approach). It operates in two
modes: monitoring and troubleshooting, facilitating proactive
issue detection, and retrospective analysis.

Lexicon takes logs generated from different processes in
different cloud environments of Ericsson (Kubernetes pods
creation, VM creations, health checks, application tests, etc.),
and analyzes these logs primarily based on the log message.
Lexicon also detects erroneous logs based on the messages
displayed by the logs. It categorizes all the input logs into
different groups (log types) based on the similarity of their
message and the process that generated these logs. This
categorization is done for both normal and erroneous logs.
Lexicon assigns a ‘normal value’ to each log, which is on a
scale of -1 to 10 based on how likely the log is to be a normal
log without any anomaly or error. Here, an anomaly refers to
any unexpected behaviour or error in the associated cloud
environment. The details on the normal value in the context of
Lexicon are provided in Table I. Lexicon sends the logs with
very low normal values to system experts for

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

60

manual analysis to understand the root cause of the error that
the log might represent. Although Lexicon reduces the manual
effort involved in error detection and root cause analysis to a
great extent, the combination of the timestamp-based analysis
approach with Lexicon’s existing identifier-based approach can
prove to be beneficial in further reducing the manual effort
involved in anomaly detection and root cause analysis.

The aim of this study is to streamline log analysis for root
cause detection in Ericsson’s cloud environment by reducing
the system experts’ effort involved in log analysis. This is
achieved by combining the two approaches of log analysis:
Identifier-based and Timestamp-based. Once Lexicon
classifies the logs based on an identifier-based approach, we
further classify them using a timestamp-based approach, which
includes identifying frequency patterns in logs corresponding
to different processes and flagging deviant logs as anomalies.

II. RELATED WORK

Previous research includes developing new approaches for
automated log analysis, however, the existing ap- proaches
consider only one approach of analysis, i.e., either
identifier(message)-based or timestamp-based [6]. We wanted
to see if we can improve the efficiency of log analysis-based
anomaly detection and root cause analysis by combining both
approaches. Moreover, the different log analysis tools available
currently, such as splunk, logSayer [13], log assist [11],
logFlash [9] provide automated log analysis solutions, but none
of them explored the timestamp-based approach yet. Most
automated log analysis tools concentrated on identifier-based
methods, demonstrating a gap in explor- ing the timestamp-
based aspect. Prior research, such as that by Zaman et al. [12],
presented tools like SCMiner that localize system-level
concurrency faults through log partitioning. While effective in
detecting concurrent system failures, SCMiner primarily
addresses known system failures and lacks consideration for
detecting anomalies based on their time of occurrence.
Similarly, LogAssist by Chen et al. [11] focus on summarizing
logs to condense large log files into informative summaries
through log partitioning. However, it does not consider the
detection of anomalies based on their time frequency patterns.
The proposed log analysis in this paper advances log
partitioning by combining it with feature extraction, forming a
good base for further anomaly detection. Grund et al. [4]’s
approach, grounded in clustering and statistical methods,
abstracted logs automatically. In comparison, this paper builds
on these methods

III. STUDY DESIGN

In this section, we describe the steps followed to streamline
log analysis for root cause detection in Ericsson’s cloud
environment. The steps conducted in this study are illustrated in
Figure 1.

Fig. 1. Research workflow

A. Data Preparation

The initial dataset comprises seven JSON files, each en-
compassing a complete day’s worth of system logs. The dataset
contains an extensive collection of approximately 10 million
logs which were initially analysed by Lexicon using the
identifier based approach, offering a rich source of data for
analysis. In each log, several fields were captured in a
structured manner, including a unique log uuid, log type, log
input type, timestamp, message, and cleaned message, among
others. In order to prepare the initial dataset for comprehensive
analysis, a series of data preprocessing steps were
implemented. The seven JSON files, each representing a single
day’s log data, were combined into a single dataset to prepare
the logs to be grouped on the basis of their log type. A Python
script was written to extract and transform the structure of the
log entries and store all these entries in a data frame. Each
column within the data frame corresponds to a specific log
field, such as log uuid, log type, message, timestamp, and many
more.

Since it is computationally complicated to deal with all the
fields of a huge number of logs, necessary fields were extracted
before proceeding with the analysis. Log ID, log type,
timestamp, normal value, and message were the required fields
for the frequency analysis. Important fields from the log data
were selected for the analysis based on what would support the
frequency analysis and what log fields would be needed for the
system experts to analyze the logs efficiently. A Python script
was written to extract the necessary fields from the data set and
store them in a separate data frame. While forming this data
frame, the logs were grouped according to their log types.
Approximately 2000 log files were generated, each of which
contained logs pertaining to a particular process in the cloud
environment.

The log data contained no null values or significant anoma-

START

Log Data

Data Preparation Pattern Identification

Data
preprocessing

Feature
selection Data cleaning DBSCAN

clustering

Well
defined

No
Hyper

parameter
tuning

Yes

Apply
evaluation

Manual analysis

END nterview
s

Outlier
identification

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

61

lies that needed removal or replacement. For our analysis, we
excluded some log files that contained fewer than 100 logs. This
was because we had sufficient examples of log types with more
data, which would lead to a more representative result for this
kind of analysis. Also, one of the targets of this research is to
reduce the amount of logs sent for manual analysis. It is more
effective if the analysis is run on the log types that appear
several hundreds of times.

The first author converted 7 JSON files, each representing
logs from one day of the week, into approximately 2000 files.
Each of these new files contained logs of one log type. Then the
first author excluded files with less than 100 logs from the 2000
files.

The final dataset consists of the fields listed in table I.

TABLE I
LOG FIELDS

Log uuid It is a unique identifier for each log.
timediff It is the time difference between the current log and

its preceding log in seconds.
log type It is a hash ID that is unique to each log type, which

depicts a particular process occurring in the cloud
environment.

normal value It is a value assigned to a particular log type by
Lexicon according to the degree of normalcy shown by
the log occurrences on a scale of -1 to 10, where 0
means that the log is abnormal/erroneous, and 10 means
that the log is normal. A normal value of -1 indicates
that the log hasn’t been seen before and is new to
Lexicon.

message The raw message displayed by the log

B. Pattern Identification
The prepared data set consisted of log files, each log file

consisting of logs corresponding to one log type, which
represents a particular process in the cloud environment. It was
necessary to identify the temporal patterns of these logs in order
to proceed with the study. DBSCAN algorithm was used to
identify the frequency patterns in each log file. Traditional
clustering methods like K-means and KNN may struggle with
identifying time-based patterns, especially when clusters occur
at irregular intervals [10]. In these clustering algorithms, the
number of clusters needs to be mentioned explicitly, and since
there was no prior information on how many temporal patterns
could be identified in one log file, it was not possible to use
them for this analysis. DBSCAN, however, is useful in
detecting clusters based on temporal proximity.

Each log file, representing a specific log type, was sequen-
tially loaded for clustering. Parameters such as epsilon() and
min samples were meticulously calibrated to optimize clus-
tering results, with an iterative hyperparameter tuning process
ensuring alignment with the temporal dynamics inherent in the
log data. The importance of each hyperparameter in the context
of log frequency analysis is as follows:

• Epsilon () - Defining Neighbourhood Radius: The epsilon
parameter served as a pivotal determinant in delineating
the radius within which data points were

considered neighbors. In the context of log frequency
analysis, epsilon played a crucial role in capturing the
temporal proximity of log occurrences. A range of epsilon
values were explored with meticulous tuning to strike a
balance between granularity and inclusivity.

• Min samples - Determining Cluster Density: This pa-
rameter emerged as a vital factor in shaping the clustering
process. It dictated the minimum number of data points
required to constitute a cluster, a critical consideration
given the varied frequencies of log occurrences. For
example, some log files can have 100 logs but some other
can have 500 logs. Also, in each log file, a number of logs
can have one temporal pattern and some other logs can
have a different temporal pattern. In log frequency
analysis, fine-tuning min samples is crucial to adapt the
algorithm’s sensitivity to density fluctuations displayed
by different log types.

• Custom Distance Metric - Tailoring for Log Character-
istics: The custom distance metric was intricately crafted
to encapsulate the temporal dissimilarity between log oc-
currences, a fundamental aspect in log frequency analysis.
The main challenge faced while implementing DBSCAN
on the log data was that each log type had different time
intervals between consecutive logs, and it was not
possible to use the same set of hyperparameters for all the
log types and achieve the same efficiency in clustering. A
fixed inter-cluster distance could not be used for all the
clusters in all the log files. For a cluster in which the time
difference between consecutive logs is 1 second, a
distance of 1 second will be huge. On the contrary, for
clusters where the time difference is in minutes or hours,
1 second distance will be insignificant. Usage of this
custom distance made it possible to use constant values
for the hyperparameters in every cluster, especially for
epsilon, which otherwise would have to be tuned for every
log type. Using a custom distance metric enabled
normalizing the variance within the clusters based on the
time difference between consecutive logs.

The identified patterns were systematically analyzed, con-
sidering cluster statistics and visualizations such as scatter
plots. We considered evaluation metrics to serve as objective
criteria for selecting log files for in-depth analysis. Details
about the evaluation metrics:

• Mean by Standard Deviation value: This metric is used to
measure the dispersion among the data points in a cluster.
A higher dispersion means that the clusters are not well
defined, and the gap between data points is bigger. A low
mean by standard deviation value indicates that the
clusters are well-defined.

• Outlier by Datapoint count ratio: This metric is the ratio
of the number of outliers in a log file to the total number
of logs in the log file.

• Silhouette score: This metric measures how well a dataset
is clustered by measuring intra-cluster similarity and
inter-cluster discrimination.

n

n

n

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

62

Subsequently, outlier logs were extracted for further manual
analysis, aimed at facilitating error detection within the log data.

C. Manual Analysis
The manual analysis phase commenced after applying the

DBSCAN clustering algorithm and identifying outliers us- ing
predefined evaluation metrics. These metrics guided the
selection of files that could be sent for detailed analysis. The
manual examination aimed to reveal the relation between
specific log messages and temporal patterns shown by them,
providing insights into error detection and root cause analysis
implications. All the logs that deviated from the identified
frequency patterns were termed outlier logs. The legitimacy of
the outliers was supported by using evaluation metrics for the
DBSCAN clustering algorithm. Some of the outlier logs were
taken and manually analyzed to identify the cause of the
deviation. The outlier logs were then sent to system experts to
learn more about these logs and to identify if these outliers
indicated anomalies in the processes.

Semi-structured interviews [8] were conducted with system
experts to extract insights into manual log analysis. Practitioners
from Ericsson were selected for the interviews based on
expertise in log analysis and domain knowledge. The interviews
aimed to understand the relevance of log frequency analysis for
reducing manual effort and to explore connections between log
processes and temporal pat- terns. A collaborative effort with
manual log analysts followed, involving a curated selection of
log files shared for analysis. Analysts were briefed on the
current functioning of Lexicon and the proposed improvements
to log analysis before conduct- ing a thorough manual analysis.
Subsequent semi-structured interviews enabled analysts to
share their observations and insights, focusing on potential
errors indicated by logs, outlier significance, and the approach’s
feasibility of reducing man- ual workload. Interview topics
ranged from the professional backgrounds of the practitioners
to the methodologies used for log analysis and encountered
challenges. The aim of the interviews was to understand the
impact of the proposed approach of log frequency analysis,
reviewing outlier logs, and envisioning its integration into
existing workflows. In addition, the intention was to get
feedback to refine the approach and foster collaboration
between automated techniques and human expertise for
effective anomaly detection and manual root cause analysis in
cloud environments.

IV. RESULTS AND FINDINGS
DBSCAN clustering algorithm was implemented on the log

files to identify the frequency patterns in the form of clusters.
To verify that the clusters formed were accurate enough to
depict the frequency patterns, hyperparameter tuning was
employed to maximize the accuracy and efficiency of the
algorithm and make the algorithm suitable for all log files at
once. After iterative tuning of the hyperparameters, the final
hyperparameters were:

• Epsilon value of 0.5

• Min samples value of 20% of the total number of logs in
each log file

Fig. 2. Logs with definite temporal patterns

• Custom distance metric: abs(x - y) / mean([x, y]), where
x and y are two consecutive points in the log dataset.

A. Outcome of the timestamp-based log analysis:
After implementing the clustering algorithm, it was

observed that while most of the log types displayed temporal
patterns, a few log types had logs that did not adhere to a time-
frequency pattern. Visual representation of some clusters is
shown in Figures 2, 3, 4 where each dot on the graph represents
one log in the log type. The variation in the colors of the points
represents different clusters, where each cluster has logs that
adhere to a specific temporal pattern. Figure 2 represents a log
file which contains logs that are related to egress in a particular
cloud cluster, i.e., the process where containers reach and
communicate with external resources to get a particular task
done in Ericsson’s CNF Cloud environment. According to the
clusters, the most common time intervals between the logs
were recorded to be between 1-5 seconds, with a domination
of 2-second time intervals. The graphical representation also
shows that many logs had a time interval of 0 seconds, i.e.,
many logs occurred in a burst with no time difference among
each other. According to domain experts, these logs are
supposed to occur at regular time intervals, as the process
depicted by these logs is a timed process. Thus, all the logs that
fell in the red cluster (0 seconds time interval) were deduced as
erroneous. There are some outlier points (depicted in navy blue
in the figure) that do not follow any of the identified temporal
patterns. They might be alarming, especially if it is important
for the logs to occur in a timely manner. Upon being sent for
further analysis, the logs associated with the outliers were
found to be erroneous. This analysis was carried out as a part
of the interview process. For example, the log represented by
the navy blue dot on the top of the graph, which has an eight-
second time interval with its preceding log, was found to be
problematic after further analysis.

Figure 3 denotes a clustering result of a specific log file
containing logs that do not follow any temporal pattern. The
logs occur with varying time intervals ranging from 0

n

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

63

Fig. 3. Logs with no definite temporal pattern

to 30 seconds, with most logs occurring below 15 seconds after
the preceding log. However, a proper cluster depicting regular
time intervals could not be formed by the clustering algorithm,
as there weren’t enough log occurrences that followed a regular
pattern. The dots in blue represent the logs that occur
immediately after their preceding log. In contrast, the dots in red
represent the logs that occur after a certain time interval after
their preceding log. The logs depicted in the above graph are
related to a manually triggered query event. Thus, it is natural
that the logs which represent this process will not occur in a
timely manner.

Fig. 4. Logs with temporal patterns and outliers

Figure 4 denotes a clustering result of logs that have both
- temporal patterns and scattered logs. On analyzing the
messages displayed by these logs, it was found that these logs
belong to a process related to load balancing of a containerized
application. The message displayed by the log did not show any
error, but the logs were occurring continuously without any gap
(represented by the sea green colored points). This immediate
occurrence of a burst of logs is alarming with respect to the
domain of these logs, and thus, it might indicate an error. On the
contrary, the logs shown by the purple points have a consistent
pattern with varying time intervals, which shows that the load
balancing in the container is running well. It is noticeable from
the graph that the pattern represented by the purple points
repeats after 200 log occurrences. It is not necessarily a pattern
with regular log occurrences, as the time

Fig. 5. Histogram representing outlier/datapoint count ratio for different log
files

differences between consecutive logs ranged from 1 second to
7 seconds in this pattern. Still, it was interesting to send the

logs of this log type for further manual analysis to identify the
domain of the logs and see why this pattern has occurred. In a

similar manner, many other log files were analyzed using
DBSCAN clustering. Here, the logs of each log type were fed

to the clustering algorithm, and time patterns in each log file
were identified. Most of the identified patterns helped in

analyzing the logs based on their timestamps and enabled
the detection of hidden errors and abnormal behavior.

Our algorithm showed promising clustering results, as it
could identify temporal patterns in the logs of different log
types. The best way to validate the clustering results and the
overall idea of log frequency analysis was to involve human
evaluation in the clustering algorithm results. As it was not
possible to send all the files for manual analysis due to the
limited availability of system experts and a huge number of log
files, certain log files had to be selected that showed promising
clusters and an optimal number of outliers. To decide which
files are most suitable for further manual analysis, a few
evaluation metrics, such as outlier/datapoint count ratio and
silhouette score were used.

The selection criteria employed by the evaluation metrics to
select the log files for outlier analysis and manual log analysis
are:

• Low Mean/Std value
• Outlier/datapoint count ratio lower than 10%
• Silhouette score close to 1.0 (for files with multiple

clusters)
Figures 5 and 6 provide an overview of the evaluation

metrics, which helped in evaluating the clustering efficiency
and choosing the files for further manual analysis. These
histograms were generated to analyze the distribution of log
files that fall under different values of the evaluation metrics,
i.e., outlier by data point count ratio and silhouette score. The
processed data set consisted of more than 200 log files, and
sending all these files for manual analysis was impractical.
Evaluation metrics were therefore used to select the files that
can be sent for manual analysis. Having a visual representation
of these metrics further facilitated a calculated selection of log
files.

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

64

Fig. 6. Histogram representing silhouette scores of the log clusters

Figure 5 shows the distribution of the ratio of the number of
outliers to the total number of logs in each file. The X-axis
represents the outlier count/Data point count ratio. Here, the
ratio of 1.0 indicates that all data points were outliers, and 0
indicates the absence of outliers. Keeping the log files with no
outliers aside, the majority of the log files had a ratio of less than
20% (0.2 on the x-axis). Meaning that 20% of the logs in a log
file were outliers. Such logs would be more appropriate to
consider for anomaly detection using log frequency analysis.
Therefore, we considered focusing on logs with less than 20%
outliers for manual analysis.

Figure 6 shows the distribution of the silhouette score in log
files containing more than one cluster. The histogram shows
that the majority of the log files had a silhouette score of
0.7. However, a silhouette score close to 1 indicates distinct
clusters. Hence, a combination of files that had silhouette scores
of 0.7-0.9 was considered for manual analysis.

We conducted interviews involving Ericsson practitioners
having experience with domain knowledge of the CNF cloud
environment and manual log analysis for error detection and
root cause analysis. Before the interviews, relevant log files and
identified outliers were sent to the participants. Partic- ipants
were provided with background information on the log analysis
tool, the research on frequency analysis, and the specific context
of the study.

The interview consisted of 4 practitioners with varying ex-
periences and responsibilities to consider different perspectives
on the log frequency analysis and its impact. The information of
the participants is listed in Table II.

TABLE II
INTERVIEW DEMOGRAPHICS

B. Feedback on the timestamp-based log analysis:

The System experts, after analyzing the outlier logs of each
log type, were able to find that the outlier logs indeed indicated
anomalous behavior in the associated process. They felt that
instead of analyzing all the logs pertaining to the failed process,
only analyzing the logs that deviated from the frequency
pattern reduced the effort involved in error detection by
condensing the number of logs sent for root cause analysis to a
great extent. This approach can also be used for proactive
system monitoring and predictive maintenance of systems.

The interview structure along with the results consisting of
practitioners’ perceptions of the revised log analysis is
provided below:

1) Interviewee summary: We started the interview by
asking participants about their experience, roles, and the
tasks they are involved in. Table II summarizes the
introduction of the interviewees.

2) Understanding the current process of Log analysis:
Participants were asked about the typical process fol-
lowed to analyze logs and the problems faced while
analyzing these logs for error detection analysis before
proceeding with the explanation of our approach.
Responses from the Participants: The experts analyze
log messages, such as ‘debug´ and ‘error´ from a set of
logs associated with a particular process. However, they
also note that sometimes, “the logs might not be
showing any suspicious message, which makes it
difficult to comprehend where the actual error is
coming from”. A Cloud Solutions Architect added that
“Another problem that we face regularly is the huge
number of logs we need to analyze to get to the root
cause of the error. it gets tedious sometimes.”

3) Explaining the revised Frequency Analysis Ap-
proach: Participants were given a briefing about the re-
vised log frequency analysis approach, after which they
were asked if they understood the new approach, and if
they perceived any benefits or limitations regarding
revised the frequency analysis.
Responses from the participants: During the interview,
the participants were informed about the frequency
analysis approach and its potential integration into the
current workflow of the Lexicon. The solution architects
who are involved in supervision of log analysis high-
lighted that it is not practical to manually examine the
timestamps of a large number of logs. Hence, they are
rarely considered in the manual analysis. However, they
added that “not looking at timestamps of the logs might
lead to neglecting some logs which might be erroneous,
but do not show any error message”. Furthermore, A
senior cloud technology developer mentioned that “I feel
this frequency analysis approach will be beneficial in
reducing the number of logs that we need to deal with for
error detection because identifying timestamp-based
patterns and eliminating the logs that adhere to a pattern
can enable better efficiency of log analysis.”

Questions Participant
1

Participant
2

Participant
3

Participant
4

Experience 9 Years 4 years 5 years 2 years
Role Lead Cloud

Solutions
Architect

Solutions
Architect

Senior
Cloud
Technology
Developer

Cloud Tech-
nology De-
veloper

Tasks Higher level
supervision
of log-
based error
detection

Manual log
analysis

Development
of services
in cloud
environmen
t

Development
of Lexicon
tool

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

65

4) Review of Outlier Logs: The log files and their outliers,
which were identified as a result of the clustering process,
were shared with the practitioners two weeks before the
interviews for them to have a thorough understanding of
the logs. During the interviews, they were asked about
their understanding of the domain of these logs and their
experience with detecting errors using the outlier logs
alone.
Responses of the participants: Participants analyzed the
log files and their corresponding outlier logs. All in-
terviewees mentioned that they were able to get to the root
cause of the error by just analyzing the outlier logs in most
cases. One interviewee further elaborated that “Out of the
5 log files provided to me, in 4 files, I could trace the error
by just analyzing the outlier logs, and analyzing the
temporal logs [not outliers] did not yield in the
identification of extra errors.” In some cases, they could
not identify the root cause but could find the error by
analyzing the logs that occur immediately before and after
the outlier logs, in the given cloud system environment. X
added that “the neighboring logs showed problematic
behavior in the cloud environment, which led to delay of
the selected [outlier] logs. In fact, this way we could catch
hold of some errors which might not be visible otherwise.”

5) Error Detection and Correlation: Participants were
asked to discuss the extent to which the outlier logs helped
in error detection.
Responses from the participants: The participants deemed
that most log files’ outliers were associated with errors.
However, they felt that the correlation of error detection
with the outliers of frequency analysis would also depend
on the domain of the process depicted by the logs. For
example, it is important that logs pertaining to automated
processes such as health checks follow a time pattern, but
the same is not true for logs depicting manually triggered
events. X further elaborated “Out of the files sent to me,
one file was related to fetching data from a database
deployed in one of the containers in the CNF environment.
The logs mostly followed a temporal pattern, but it was not
necessarily a timed process, because it can be manually
triggered too. Thus, analyzing the outliers in such cases
wouldn’t help much, as the logs not following a time
pattern in such cases don’t necessarily mean that there is
an error.”

6) Impact on Manual Analysis: Participants were asked
whether frequency analysis could reduce the manual
analysis workload and how it might fit into their existing
workflows.
Responses from the participants: The participants felt that
this approach would indeed help in reducing the manual
effort, as in most cases, analyzing the outliers alone was
enough to detect the errors. X added “If all the logs were
to be analyzed, it was a very tedious task for us. We get to
the root cause eventually, but the work

involved takes a lot of time. For example, one of the files
which I analysed as a part of this interview, contained
close to 150 logs. whereas, the outlier logs in this file
were only 9. I could detect the error just by analysing
these 9 logs, and tracing their neighbour logs helped me
reach the root cause of the error. I checked the
remaining 150 logs which followed a temporal pattern,
to see if there are any underlying errors indicated by
them. I could not find anything new which was not found
by analysing these 9 outlier logs. So I would say this
would increase the efficiency of my daily workflow to a
great extent.”

7) Suggestions for Improvement: Participants were
asked to offer suggestions for enhancing the accuracy of
the approach and additional features.
Responses of the participants: The participants were
satisfied with the frequency analysis approach and sug-
gested integrating it into the Lexicon pipeline. A cloud
technology developer further added that “it is better to
deduce a way so that you can implement it in Lexicon,
which will cater to a lot of analysts, and will improve
the efficiency of Lexicon in root cause analysis of
errors.”

8) Future Considerations: Participants were asked to
share insights on potential applications beyond error
detection and challenges in implementing the approach.
Responses from the participants: During the interview,
one of the participants working as a senior cloud
solution architect shared an interesting use case of
frequency analysis to predict maintenance needed in a
cloud envi- ronment. He added “I think since we are
going to use this approach for error detection, we can
go a step forward and also use this approach for
predictive maintenance of the associated cloud
environments. This way, we can predict arising errors
before their occurrence and take proactive measures to
prevent them. This will further help us, as we will not
have to deal with such a huge amount of errors if they
can be prevented beforehand.”

C. Impact on manual analysis effort:

Before conducting frequency analysis, experts would have
to analyze 2252 logs for anomaly detection across 20 log files.
However, after performing the log frequency analysis, the
number was reduced to 167 logs. These logs were identified
as outliers and were helpful in tracing errors. The remaining
2085 logs, identified as normal (non-outlier) logs, did not lead
to any errors in the associated processes. We found that the
manual effort involved in analyzing the logs in our sample was
reduced by 92.6%. This percentage is calculated by comparing
the number of logs analyzed before (2252) and after (167) the
introduction of log frequency analysis.

True Positives and False Positives: According to the
manual analysis by system experts, 142 out of 167 outlier logs
indicated anomalies, resulting in a true positive percentage of
approximately 85% and a false positive percentage of
approximately 15%.

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

66

V. LIMITATIONS AND THREATS TO VALIDITY
The dataset used for log frequency analysis consisted of logs

that occurred in a specific time frame, which limits the results
of this analysis to the sample considered in the study.
A. External Threats

The log files used for manual analysis of logs in our study
were limited, as it was not possible for system experts to analyze
a large amount of logs. The number of log types identified in
the initial data set was ~2000, of which some types were
excluded because the number of logs that these files had was not
sufficient to identify frequency patterns. Out of more than 200
log files that made it to the final step of the automated analysis,
20 files were selected that could be sent to system experts for
further manual analysis based on the evaluation metrics. All the
files used for the manual analysis had an outlier log ratio of 10-
20%, and log files that had varying percentages of outliers were
not explored for manual analysis. The extent of effort reduction
in manual log analysis can change with changing log data and
thus cannot be generalized. However, we expect that the logs
that have 10- 20% outliers based on timestamps can have similar
results in terms of reduced manual effort. However, analyzing
more log files manually may lead to better insights into the
effectiveness of the log frequency analysis.
B. Internal Threats

The logs used in this Thesis were limited to one cloud
environment of Ericsson, which makes the results of this
analysis domain specific. Further research on log frequency
patterns needs to be conducted to generalize the validity of this
research to other domains in the field of Computing.

VI. CONCLUSIONS AND FUTURE WORK
Our experience has shown that analyzing logs for error

detection and root cause analysis can be made more efficient by
using a log frequency analysis approach that combines a
timestamp-based and identified-based method. Collaborat- ing
with system experts through interviews and manual log analysis
has been instrumental in validating the efficacy of this
approach. This collaborative approach has the potential to
reduce manual analysis efforts and improve anomaly detection.
In the future, the research could focus on refining outlier
selection criteria and incorporating advanced machine learning
models to automate the process of outlier extraction using log
frequency analysis. The outlier logs can be identified
continuously in streaming log data for the proactive
identification of anomalous behavior in the associated process.
This way, this analysis can be extended to all log types without
restricting it to the log files that have a certain percentage of
outlier logs.

REFERENCES
[1] Xavier Baril, Oihana Coustie´, Josiane Mothe, and Olivier Teste. 2020.

Application Performance Anomaly Detection with LSTM on Temporal
Irregularities in Logs. In Proceedings of the 29th ACM International
Conference on Information & Knowl- edge Management (Virtual Event,
Ireland) (CIKM ’20). Associa- tion for Computing Machinery, New York,
NY, USA, 1961–1964. https://doi.org/10.1145/3340531.3412157

[2] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R.
Lyu. 2021. Experience Report: Deep Learning-based System Log
Analysis for Anomaly Detection. https://arxiv.org/abs/2107.05908

[3] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog:
Anomaly Detection and Diagnosis from System Logs through Deep
Learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY,
USA, 1285–1298. https://doi.org/10.1145/3133956.3134015

[4] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy.
2015. Experience report: Anomaly detection of cloud application
operations using log and cloud metric correlation analysis. In 2015 IEEE
26th International Symposium on Software Reliability Engi- neering
(ISSRE). 24–34. https://doi.org/10.1109/ISSRE.2015.7381796

[5] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and
Michael R. Lyu. 2021a. A Survey on Automated Log Analysis for
Reliability Engineering. ACM Comput. Surv. 54, 6, Article 130 (jul
2021), 37 pages. https://doi.org/10.1145/3460345

[6] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and
Michael R. Lyu. 2021b. A Survey on Automated Log Analysis for
Reliability Engineering. ACM Comput. Surv. 54, 6, Article 130 (jul
2021), 37 pages. https://doi.org/10.1145/3460345

[7] Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua
Ma, Yining Wei, Yingnong Dang, Saravanakumar Rajmohan, and
Qingwei Lin. 2022. An Empirical Study of Log Analysis at Microsoft.
In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(Singapore, Singapore) (ESEC/FSE 2022). As- sociation for Computing
Machinery, New York, NY, USA, 1465–1476.
https://doi.org/10.1145/3540250.3558963

[8] S.E. Hove and B. Anda. 2005. Experiences from conducting semi-
structured interviews in empirical software engineering research. In 11th
IEEE International Software Metrics Symposium (METRICS’05). 10
pp.–23. https://doi.org/10.1109/METRICS.2005.24

[9] Tong Jia, Yifan Wu, Chuanjia Hou, and Ying Li. 2021. LogFlash: Real-
time Streaming Anomaly Detection and Diagnosis from System Logs for
Large-scale Software Systems. In 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). 80–90.
https://doi.org/10.1109/ISSRE52982.2021.00021

[10] Hari Kanagala and V.V. Krishnaiah. 2016. A comparative study of K-
Means, DBSCAN and OPTICS. 1–6.
https://doi.org/10.1109/ICCCI.2016.7479923

[11] Steven Locke, Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Wei Liu.
2022. LogAssist: Assisting Log Analysis Through Log Summarization.
IEEE Transactions on Software Engineering 48, 9 (2022), 3227–3241.
https://doi.org/10.1109/TSE.2021.3083715

[12] Tarannum Shaila Zaman, Xue Han, and Tingting Yu. 2019. SCMiner:
Localizing System-Level Concurrency Faults from Large System Call
Traces. In 2019 34th IEEE/ACM Interna- tional Conference on
Automated Software Engineering (ASE). 515–526.
https://doi.org/10.1109/ASE.2019.00055

[13] Pengpeng Zhou, Yang Wang, Zhenyu Li, Xin Wang, Gareth Tyson, and
Gaogang Xie. 2020. LogSayer: Log Pattern-driven Cloud Component
Anomaly Diagnosis with Machine Learning. In 2020 IEEE/ACM 28th
International Symposium on Quality of Service (IWQoS). 1–10.
https://doi.org/10.1109/IWQoS49365.2020.9212954

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

67

