
Abstract—Writing good software documentation imposes sig-
nificant effort. Large Language Models (LLMs) could potentially
streamline that process, though. So, the question arises whether
current LLMs are able to generate valid code documentation
for classes and methods on basis of the bare code. According
to literature, various such models have the capability to gen-
erate documentation that is on par with or even superior to
reference documentation. In our experimental study using zero-
shot prompting, we found that the model GPT-4 by OpenAI
leads to poor results when measuring similarity to the reference
documentation on class level. Thus, GPT-4 is not yet usable for
generating class documentation. On method level, however, the
model achieved higher similarity ratings and can be considered
applicable for the use case.

Index Terms—LLM, Large Language Model, GPT-4, Software
Documentation, Class Documentation, Method Documentation

I. INTRODUCTION

The documentation of software is of crucial importance in

the software development process. It contributes significantly

to the comprehensibility, maintainability and further develop-

ment of software projects [1]. However, the creation of high-

quality documentation tends to involve considerable effort.

This often means that documentation is neglected or does

not achieve the desired level of quality [2]. In recent years,

large language models (LLMs) have emerged as promising

technologies. The application ChatGPT, based on OpenAI’s

GPT model series, in particular has attracted a lot of attention

[3]. These models are able to generate human-like text and

respond to requests in natural language [3]. In addition, some

LLMs are able to handle source code, which is attracting

increasing interest for use in software development tasks

including the generation of software documentation [4]–[6].

A. Motivation & Objective
Many programming languages (or, their tooling, actually)

offer a way to document code through structured comments.

Examples for this include Java’s Javadoc or JavaScript’s

JSDoc comment formats, or Python’s Docstring system which

utilises string literals. Poor documentation is common in

industry and little effort is put in improving it [7]. With the

current speed of developing newer LLMs, automation of code

documentation might be on its way, too. This lead us to the

following research question: What results does Java class and

method documentation generated by GPT-4 achieve, compared

to manually written reference documentation?
To answer this question, we investigated GPT-4’s capability

to generate class and method documentation for Java code, i.e.,

Javadoc comments for classes and methods, in an experiment.

Other large language models, including previous versions of

the GPT model, have already been surveyed for this use case.

B. Related Work

Table I presents an overview of recent work on code

documentation generation with LLMs. It can be seen that

the automated generation of method level documentation has

already been investigated rather extensively. Concerning the

class level, however, scientific literature is currently lacking.

II. RESEARCH METHOD

To answer the asked research question, we conducted an

experiment on the quality of GPT-generated source code docu-

mentation. In this section, the experiment setup is explained in

detail, including a description of the used model and the used

Java classes. This is followed by the created prompt designs

and an overview of the applied evaluation methods.

A. Datasets

As test data, we used eleven Java classes to have the AI

model generate Javadoc comments for class level, and method

level, for a selection of five methods per class. This leads to a

total of eleven classes and 55 methods, including seven classes

from the Java Development Kit (JDK), one from the EJML1

package and three from the JHotDraw2 package.

B. Applied LLM

OpenAI’s latest model, GPT-4, has come out in March 2023

[14]. As per Table I and how new the model still is, few

research papers on it have been published yet. For that reason,

we used GPT-4 in this experiment, to address this research

gap and investigate the model’s effectiveness in terms of code

documentation. GPT-4 is able to process visual as well as

textual input; it outperforms many existing LLMs in a number

of NLP tasks and eclipses the vast majority of SOTA models

[14].

C. Prompt Design

To test the basic performance of GPT-4, we chose a zero-

shot prompting approach, consisting of two prompts: one for

the method-level and one for the class-level documentation.

Thus, the same prompts have been used for all test data for

1http://ejml.org
2https://www.randelshofer.ch/oop/jhotdraw/

Using GPT-4 for Source Code Documentation

Magdalena Kneidinger, Markus Feneberger, Reinhold Plösch

Institute of Business Informatics - Software Engineering
Johannes Kepler University

Linz, Austria

k12019988@students.jku.at, {markus.feneberger,reinhold.ploesch}@jku.at

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

105

Citation Model(s) Language(s)
(Dataset(s))

Layer(s) Evaluation

[3] ChatGPT (GPT 3.5), compared with CodeBERT & CodeT5 Python (CSN) Method BLEU, METEOR, ROUGE-L
[8] GPT-3.5, GPT-4, Bard, Llama2, Starchat Python Inline, Method,

Package
Manual

[9] GPT-3.5 Java (Funcom) Method Manual

[10] CodeX, compared with CodeBERT variants, CodeT5, few-
shot prompting focus

Various3(CodeXGLUE) Method Smoothed BLEU-4

[11] CodeX Few-shot prompting and ICL4focus Java (Funcom, TLC) Method BLEU, ROUGE-L,
METEOR, Manual

[12] CodeBERT, GraphCodeBERT Java, Python - BLEU-4

[6], [13] CodeT5+, compared with RoBERTa, CodeBERT, UniX-
coder, PLBART, CodeT5

Various1 (CodeSearch-
Net)

Method Smoothed BLEU-4

both documentation layers, to ensure comparability between

test classes and methods. After a few trial runs, the prompts

have been constructed as follows:

• System Prompt: The model has been assigned the role of

a helpful assistant for Javadoc code summarising.

• Task: The model has been given the task with clear

instructions. Three quality criteria were mentioned: Cor-

rectness, Completeness and Conciseness as well as the

code level to generate documentation for.

• Datasets: The whole, uncommented Java class was given

to the model.

• Output: The model was instructed to return the Java code

with the newly inserted Javadoc comments.

Taking all these aspects into account, we went with these two

prompts:

• Add accurate, complete and concise Javadoc-documenta-

tion to the class and all methods and fields of this java-

class: {javaCode}. The output should contain the whole

source code of the given java-class with all generated

Javadoc-documentation.

• Add accurate, complete and concise Javadoc-documenta-

tion to the following methods of this java-class: {java-

Code}. The methods are: [Names of the five selected

methods]; please also consider the annotations. The out-

put should contain the code of these java-methods with

the generated javadoc-documentation.

D. Evaluation

The quality of the generated code documentation was

evaluated based on different metrics. As automated metrics,

Smoothed-BLEU-4 and ROUGE-1 have been used. Both met-

rics are commonly used for similar experiments [10], [11],

[13], [15], see Table I. They both measure the similarity of two

texts [16], [17]. The improved version of BLEU, Smoothed-
BLEU, attempts to improve on some problems as the original

only correlates weakly with human judgement.

In addition to BLEU and ROUGE, we performed a manual

evaluation as well. Since the two metrics only evaluate the

3Six languages, including Java and Python
4In-context Learning

lexical discrepancy between the generated and the reference

documentation, they are not sufficient to detect semantic

differences [11]. Furthermore, we cannot assume that the

original documentation is perfect, an aspect that has to be

considered in the comparison of generated documentation.

For that reason, the generated documentation was checked for

correctness, completeness and conciseness, which are three

common quality criteria [9]. To allow quantitative evaluation,

we defined a four-part scale for each criterion:

III. RESULTS

In this section, the results of the conducted experiment

are presented, grouped by documentation level and type of

evaluation.

A. Class-level documentation

Figure 1 shows the results of the manual evaluation of the

class documentation. The points have been averaged across

all classes, by criterion. The bar chart presents the evaluation

points of the reference documentation (light) and the generated

documentation (dark) pairwise.

Considering correctness, the diagram shows that both the

reference documentation and the generated documentation

have reached the full three points, i.e., do not include any false

information. This is not the case for completeness, where the

generated documentation has performed significantly worse at

only 1.3 pts. Overall, GPT-4 tended to generate shorter, more

general descriptions that miss key elements that are included in

the reference documentation. This also leads to GPT-4 almost

matching the reference documentation in conciseness, though.

Applying the metrics ROUGE-1 and Smoothed-BLEU-4

showed that GPT-4 did not generate class documentation that

is similar to the reference documentation:

• ROUGE-1: 17 %

• Smoothed-BLEU-4: 3.38 %

The above-mentioned shorter comments from GPT are partly

responsible for this. On five classes (i.e., almost half of them),

the BLEU result was less than 0.1 per cent. The highest BLEU

score was achieved on java.lang.Integer at 16.6 per

cent. While being generally higher, the ROUGE score corre-

lated strongly (Pearson correlation coefficient of 0.9433). The

TABLE I
PREVIOUS STUDIES ON LLM-GENERATED CODE DOCUMENTATION

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

106

Criterion Points Definition

Correctness

0 The documentation is incorrect as a whole or missing entirely
1 The documentation contains more than one piece of false information. What is false?
2 The documentation contains one piece of false information. What is false?
3 The documentation is correct.

Completeness

0 The documentation is missing entirely.
1 The documentation lacks multiple important pieces of information. What is missing?
2 The documentation is missing one piece of important information. What is missing?
3 The documentation is complete.

Conciseness

0 The documentation only contains unnecessary information or is missing entirely.
1 The documentation contains more than one unnecessary piece of information.

What is unnecessary?
2 The documentation contains one unnecessary piece of information. What is unnecessary?
3 The documentation is concise and hence contains no unnecessary information.

Fig. 1. Average Results on Class level Fig. 2. Average Results on Method level

correlation of both scores with the manual evaluation is much

weaker, as to be expected from the raw data: ROUGE and

Manual correlate at 0.0953, BLEU and Manual at 0.1592 per

cent. Both indicate weak, but not reliable, positive correlation

[see 18].

B. Method-level documentation

The results of the manual evaluation of the method doc-

umentation are shown in Figure 2, in the same way as the

class results in Figure 1. It can be seen that, unlike at

the class level, GPT-4 (3 pts.) has managed to surpass the

reference documentation (2.91 pts.) quality in correctness.

Also in the two other criteria, the model was able to almost

match it. This means that GPT-4 produced (significantly) more

complete method documentation than class documentation. On

several methods, GPT-4 has also outperformed the reference

documentation in completeness.

Bearing the previously learned correlation in mind, the

generated documentation can also be expected to be more sim-

ilar (i.e., higher BLEU and ROUGE scores) to the reference

documentation. This is indeed the case:

• ROUGE-1: 42.47 %

• Smoothed-BLEU-4: 18.38 %

The Pearson correlation coefficient was also calculated for the

method data:

• ROUGE with BLEU: 0.9112

• ROUGE with Manual: 0.1938

• BLEU with Manual: 0.2075

So, both similarity metrics strongly correlate among the

method documentation as well. The correlation of each metric

with the manual evaluation results is stronger than at the class

level but still quite weak. Thus, a higher similarity indicates

a slightly higher probability that a generated Javadoc method

comment is correct, complete and concise. The major threat to
validity is besides the limited number of investigated documen-

tation the fact that the quality of the reference documentation

and of the generated documentation was judged by two

experts, only. Nevertheless, we think that only using similarity

metrics is not convincing, but needs expert judgement from

point of view of software developers.

IV. CONCLUSIONS

To evaluate whether the large language model GPT-4 is

capable of generating Javadoc comments for classes and

methods, we conducted a two-part experiment.

At class level, both the generated and the reference doc-

umentation received maximum scores in terms of accuracy.

However, the generated documentation showed significant

deficits in completeness compared to the reference docu-

mentation, as they were shorter and less detailed and often

lacked important details and standard Javadoc tags. In terms of

conciseness, the generated and reference documentation scored

similarly. In general, the generated documentation could not

match the quality of the reference documentation. On two of

the eleven classes, however, it could be considered on par.

TABLE II
CRITERIA OF THE MANUAL EVALUATION

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

107

At the method level, GPT-4 performed better than the

reference documentation in terms of correctness, as GPT-

4 did not generate any incorrect information, as was the

case at the class level. However, the generated documentation

had a slightly lower completeness score, particularly due

to missing ’@see’ tags and references to special cases or

IEEE standards. Conversely, the reference documentation often

lacked descriptions of return and parameter values. The ratings

for the conciseness of the method documentation were almost

identical, which indicates that both the generated and the

reference documentation largely contained only relevant infor-

mation. The aggregated results across all classes show that in

most cases the reference documentations scored slightly higher

than the generated documentations, but without significant

differences, indicating an effective performance of GPT-4.
Since there is no evaluation of class-level documentation

in literature yet, we could not make direct comparisons.

Nevertheless, higher-level (such as class-level) documentation

imposes a challenge for large language models [19] in general.

Concerning the method level, though, our results fit with

previous insights in that the generated documentation almost

matches the reference documentation in quality. Other studies

have even found GPT-4 producing better method documen-

tation than the reference documentation [8], but we do not

know about the quality of the latter. GPT mostly relying on

the control flow instead of method and variable names [3] is

a conclusion that cannot be drawn from our results [see 3],

[12]. We currently conduct a study on the migration of a larger

hardly documented software system where we will use GPT-4

for generating documentation - in an attempt to have a better

input basis for code transformation, unit test enhancements,

etc.

REFERENCES

[1] A. Y. Wang, D. Wang, J. Drozdal, et al., “Documenta-

tion Matters: Human-Centered AI System to Assist Data

Science Code Documentation in Computational Note-

books,” en, ACM Transactions on Computer-Human
Interaction, vol. 29, no. 2, pp. 1–33, Apr. 2022, ISSN:

1073-0516, 1557-7325. DOI: 10.1145/3489465.

[2] R. S. Geiger, N. Varoquaux, C. Mazel-Cabasse, and

C. Holdgraf, “The Types, Roles, and Practices of Doc-

umentation in Data Analytics Open Source Software

Libraries: A Collaborative Ethnography of Documenta-

tion Work,” en, Computer Supported Cooperative Work
(CSCW), vol. 27, no. 3-6, pp. 767–802, Dec. 2018,

ISSN: 0925-9724, 1573-7551. DOI: 10 . 1007 / s10606 -

018-9333-1.

[3] W. Sun, C. Fang, Y. You, et al., Automatic Code
Summarization via ChatGPT: How Far Are We?
arXiv:2305.12865 [cs], May 2023. DOI: 10 . 48550 /

arXiv.2305.12865.

[4] J. Cao, M. Li, M. Wen, and S.-c. Cheung, “A study on

Prompt Design, Advantages and Limitations of Chat-

GPT for Deep Learning Program Repair,” 2023. DOI:

10.48550/ARXIV.2304.08191.

[5] Z. Feng, D. Guo, D. Tang, et al., “CodeBERT: A

Pre-Trained Model for Programming and Natural Lan-

guages,” en, in Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, Online: Association

for Computational Linguistics, 2020, pp. 1536–1547.

DOI: 10.18653/v1/2020.findings-emnlp.139.

[6] Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li,

and S. C. H. Hoi, CodeT5+: Open Code Large Lan-
guage Models for Code Understanding and Generation,

arXiv:2305.07922 [cs], May 2023.

[7] M. Kajko-Mattsson, “A Survey of Documentation Prac-

tice within Corrective Maintenance,” en, Empirical Soft-
ware Engineering, vol. 10, no. 1, pp. 31–55, Jan. 2005,

ISSN: 1382-3256. DOI: 10.1023/B:LIDA.0000048322.

42751.ca.

[8] S. S. Dvivedi, V. Vijay, S. L. R. Pujari, S. Lodh,

and D. Kumar, A Comparative Analysis of Large Lan-
guage Models for Code Documentation Generation,

arXiv:2312.10349 [cs], Dec. 2023.

[9] C.-Y. Su and C. McMillan, Distilled GPT for Source
Code Summarization, arXiv:2308.14731 [cs], Aug.

2023. DOI: 10.48550/arXiv.2308.14731.

[10] T. Ahmed and P. Devanbu, “Few-shot training LLMs for

project-specific code-summarization,” en, in Proceed-
ings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, Rochester MI USA:

ACM, Oct. 2022, pp. 1–5, ISBN: 978-1-4503-9475-8.

DOI: 10.1145/3551349.3559555.

[11] M. Geng, S. Wang, D. Dong, et al., “Large Language

Models are Few-Shot Summarizers: Multi-Intent Com-

ment Generation via In-Context Learning,” 2023. DOI:

10.48550/ARXIV.2304.11384.

[12] A. H. Mohammadkhani, C. Tantithamthavorn, and H.

Hemmati, Explainable AI for Pre-Trained Code Models:
What Do They Learn? When They Do Not Work?
arXiv:2211.12821 [cs], Aug. 2023.

[13] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder

Models for Code Understanding and Generation,” en,

in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Online and

Punta Cana, Dominican Republic: Association for Com-

putational Linguistics, 2021, pp. 8696–8708. DOI: 10.

18653/v1/2021.emnlp-main.685.

[14] OpenAI, J. Achiam, S. Adler, et al., GPT-4 Technical
Report, arXiv:2303.08774 [cs], Mar. 2024.

[15] T. Kajiura, N. Souma, M. Sato, M. Takahashi, and

K. Kuramitsu, “An additional approach to pre-trained

code model with multilingual natural languages,” in

2022 29th Asia-Pacific Software Engineering Confer-
ence (APSEC), ISSN: 2640-0715, Dec. 2022, pp. 580–

581. DOI: 10.1109/APSEC57359.2022.00090.

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

108

[16] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,

“BLEU: A method for automatic evaluation of machine

translation,” en, in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics
- ACL ’02, Philadelphia, Pennsylvania: Association for

Computational Linguistics, 2001, p. 311. DOI: 10.3115/

1073083.1073135.

[17] C.-Y. Lin, “ROUGE: A Package for Automatic Evalu-

ation of Summaries,” in Text Summarization Branches
Out, Barcelona, Spain: Association for Computational

Linguistics, Jul. 2004, pp. 74–81.

[18] E. Reiter, “A Structured Review of the Validity of

BLEU,” en, Computational Linguistics, vol. 44, no. 3,

pp. 393–401, Sep. 2018, ISSN: 0891-2017, 1530-9312.

DOI: 10.1162/coli a 00322.

[19] S. A. Rukmono, L. Ochoa, and M. R. Chaudron,

“Achieving High-Level Software Component Summa-

rization via Hierarchical Chain-of-Thought Prompting

and Static Code Analysis,” in 2023 IEEE Interna-
tional Conference on Data and Software Engineering
(ICoDSE), Toba, Indonesia: IEEE, Sep. 2023, pp. 7–12,

ISBN: 9798350381382. DOI: 10 .1109 / ICoDSE59534 .

2023.10292037.

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

109

