
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 2, 2025

1

Criteria-Based Merging of Dynamic CAL Actors
Florian Krebs and Klaus Schneider

Department of Computer Science
RPTU Kaiserslautern-Landau

Kaiserslautern, Germany
{florian.krebs, klaus.schneider}@rptu.de

Abstract—The dataflow model of computation is well-established
in many application areas, including image encoding and
decoding. This model consists of actors that process data and
communication channels that transmit data between actors.
However, when mapping these models to the systems on which
they will be executed and synthesizing the necessary code, the
number of actors often exceeds the number of execution units by a
significant amount. This results in increased overhead for data
buffering and communication between actors. To address this
issue and adapt the model to the target execution system, we
propose a technique that combines static and dynamic actors
defined in the CAL actor language. This technique is based on
actors’ composition within the dataflow network and creates a new
composite CAL actor. When merging actors, we consider the
actions of the actors, including their CAL scheduling mechanisms,
finite state machines, priorities, and guards. We derive conditions
under which connected actors can be merged to form a new CAL-
compliant actor. Preliminary experiments show performance
improvements of up to 3.6x compared to unoptimized code.

Keywords — Dataflow Model of Computation, Composition,
Actor Merge, Model Optimization

I. INTRODUCTION
Using models is a well-established method for managing the

inherent complexity of large systems. Such models can be
created at a higher level of abstraction, which simplifies the
development process. With model-based approaches, software
is designed modularly rather than being developed directly as a
target-specific implementation. In particular, the dataflow
model of computation (MoC) offers these benefits and enables
the separation of different components and the utilization of
parallelism. This model is based on directed graphs, where the
edges represent unidirectional, point-to-point communication
channels of infinite size that transmit tokens, and the nodes
represent data-processing elements, called "actors". An actor
can contain several actions, that it can execute, called "firing",
based on the availability of tokens, token values, the actions'
scheduling conditions, or by randomly selecting one of the
actions. An action can consume an arbitrary but fixed number
of tokens from the input channels and produce an arbitrary but
fixed number of tokens for the output channels. The number of
tokens consumed and produced does not need to be the same
for each channel and can be zero.

Due to the modular nature and visualization capabilities of
dataflow models, they are well suited to embedded software
design, such as signal or image processing. For example,

MPEG codecs are dataflow models [1]. However, when it
comes to code synthesis and mapping these models to real
execution units, their modular structure may not align with the
chosen hardware architecture. In particular, a model may have
many more actors than processing elements. Although the
communication channels allow for the distribution of actors
across processing elements, they can also cause significant
performance overhead. Mapping actors that exchange a lot of
data to the same processing element can reduce this effect but
cannot eliminate it completely. Consequently, methods are
required to merge actors executed by the same processing
element for the synthesis of efficient software.

Two popular classes of dataflow models are Dataflow
Process Networks (DPNs) [2] and Static Dataflow (SDF) [3].
Unlike SDF, which has constant token rates across all firings,
DPNs do not constrain their actors' (or processes') behavior.
Each actor can consume and produce different numbers of
tokens at any given time, a property known as dynamic
behavior. Since the token flow is unknown at compile time,
scheduling dynamic dataflow actors necessitates runtime
scheduling.

A. Cal Actor Language
The Cal Actor Language (CAL) [4] is a domain-specific

language for specifying dataflow actors. It provides a
comprehensive set of features for this purpose. Here, the focus
is on a popular subset of CAL that is sufficient for specifying
dataflow actors that conform to the basic definitions of the
aforementioned dataflow models. Fig. 1 shows an example of a
CAL dataflow actor.

An actor can be instantiated multiple times within the same
model. These instances are referred to as an actor instances. A
defined actor has a certain number of input and output ports
separated by “==>” (line 1); these ports are connected to
communication channels within the overall model definition.
Actions can access these ports, such as action a (line 2), which
reads a token from input port x (input pattern) and writes a token
to each of the output ports (output expression). An action can
consume and produce multiple tokens. For the sake of brevity,
action bodies that can perform more complex operations known
from common programming languages are omitted here.
Guards (line 5) define additional conditions that must be met
for the corresponding action to fire. The schedule FSM (lines 5-
9) and priorities (line 10) can further specify the scheduling for
the given actor. The FSM defines the initial state (line 5) –s_one

Manuscript received July 23, 2025; revised September 24, 2025;
accepted September 9, 2025. Published October 14, 2025.
Issue category: Regular
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i2.81

https://doi.org/10.64552/wipiec.v11i2.81

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 2, 2025

2

– and the state transitions. Each state transition lists the actions
that can be fired in the given state and cause that state transition.
Actions that are not listed cannot be fired in this state. Priorities
define which action shall be fired in case several are ready to be
fired, e.g., action a can only be fired if the scheduling conditions
for action b are not fulfilled.

Consequently, in addition to the schedule FSM, priorities
and guards must be considered for merging, otherwise the
functionality of the actors might be lost or altered.

B. Contribution
In this paper, we present a methodology for merging CAL

actors based on their composition in the dataflow model with
the resulting actors again specified in CAL (Section III). This
methodology considers guards, priorities, and the schedule
FSM during merging. The generation of new CAL-compliant
actors has the benefit of a seamless integration into existing
toolchains for code synthesis. Since actions consume and
produce fixed numbers of tokens and are bound to certain
scheduling constraints, we derive concrete criteria for a
successful (correct) CAL actor merging (Section II). In Section
IV, we show preliminary results of executions time
improvements achieved actor merging.

II. ACTOR MERGING CRITERIA
Merging dataflow actors, especially dynamic ones, is not

always possible in an arbitrary manner. In dynamic dataflow
models with data-dependent actors, such as switches, the token
flow is not known in advance, so it is impossible to determine
the token rates.

In the following, we define criteria that the actor instances
𝛼𝛼𝑖𝑖 in a connected subgraph of actor instances 𝑍𝑍 must meet in
order to be merged into a single composite actor. For the
purpose of this analysis, we define the set of channels connected
to actors αi ∈ Z as 𝐶𝐶, the set of channels with the source actor
not in 𝑍𝑍 and the sink actor in 𝑍𝑍 as 𝐶𝐶𝑖𝑖𝑖𝑖, and the set of channels
with the source actor in 𝑍𝑍 and the sink actor not in 𝑍𝑍 as Cout.
Furthermore, we use the symbols concj(ai) and prodck(ai) to
denote the consumption and production rate of an action ai ∈ αi
for the corresponding channels cj, ck ∈ C.

Criterion 1 (Internal Buffering): The merging of actors
must not buffer tokens within the composite actor across
different firings. For each channel ci between actors αi,αj ∈ Z
each combination of actions of ai ∈ αi and aj ∈ αj fired in
sequence must satisfy x ∗ prodci�aj� = y ∗ conci(ai) with
x, y ∈ N.

If buffering of tokens within the composite actor is

permitted, the boundedness of this buffering must be
guaranteed. Additionally, during scheduling, the buffered
tokens must be considered such that consumption of these
tokens takes precedence over generation of new tokens for the
same internal buffer. Therefore, buffering is avoided to reduce
the complexity of the actor merging process and the resulting
actor. The token rates of two adjacent actors to be merged must
therefore match, and multiples are allowed. For multiples, loops
must be added.

Criterion 2 (Scheduling Conditions): The guard conditions

of the actions must be propagatable. A guard condition is
propagatable, if it depends only on tokens consumed from
channels Cin or internal state variables.

This criterion simplifies the generation of guard conditions

for composite actors. Generating a guard condition that covers
the actions of two actors whose guard conditions depend on
each other's input tokens would involve propagating the guard
condition back to the actor that produces the token. This is done
by replacing the token value with the calculations that lead to
the production of the token. Therefore, generating a guard
condition for a large set of actors is not feasible since, in the
worst case, the guard conditions of the composite actor already
include most of its behavior, and it is not possible to consume
or produce additional tokens based on dynamic behavior.
Therefore, this criterion does not apply to static actors, which
can make a scheduling decision without altering the dynamics.

Criterion 3 (Minimal Schedulability): Any token numbers

in Cin that enables the actors in 𝑍𝑍 to produce tokens for Cout
must also produce the same behavior in the composite actor.

If the actors in Z can produce tokens for a given set of input

tokens in Cin, but the composite actor cannot, then other actors
may require tokens that were previously produced by actors in
Z to continue processing. However, the new composite actor
may be unable to produce these tokens, for example, in the case
of feedback cycles. If such a situation occurs, the merge could
render the previously functional network unusable.

III. ACTOR MERGING METHODOLOGY
The actor merging process consists of four steps: dataflow

configuration enumeration, merge criteria checking, actor
generation and network adjustment. The merge criteria cannot
be checked in the first step because they only apply to valid
token flows through Z. Therefore, they must first be detected.

1 actor example() uint in ==> uint out1, uint out2 :
2 a: action in:[x] ==> out1:[x+1], out2:[x] end
3 b: action in:[x] ==> out1:[x+2], out2:[x+1]
4 guard x > 5 end
5 schedule fsm s_one :
6 s_one (a) --> s_two;
7 s_two (a) --> s_one;
8 s_two (b) --> s_two;
9 end
10 priority b > a; end
11 end

Figure 1 CAL Example

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 2, 2025

3

After the enumeration step, the merge criteria are checked. Only
then can the actual actor merging take place. This includes
generating the composite actor, which includes a new schedule,
finite state machine (FSM), priorities, and actions with guards.
The final step is replacing the merged actors with the composite
actor in the original model.

A. Dataflow Configuration Enumeration
A dataflow configuration is a relation between consumed

input tokens from Cin and produced output tokens for Cout and
the corresponding (actor instance, action)-pairs and their
execution rate, executed to satisfy the input-output relation with
respect to the actors internal scheduling states. Consequently, a
dataflow configuration contains the necessary information to
generate a new action, including the current and next FSM
states in which these actions can be executed in.

The enumeration process involves first identifying the
largest connected subgraphs of Z that do not contain actors with
FSMs. These subgraphs are then pre-computed to facilitate the
subsequent enumeration of all possible token flows. The actual
enumeration starts with the initial state of all the actor instances,
which are used as the starting point of the enumeration. Based
on this state combination, all schedulable actions that consume
only tokens from 𝐶𝐶𝑖𝑖𝑖𝑖 are determined. For each valid
combination of them a new dataflow configuration is created by
iterating through 𝑍𝑍 in token flow order with respect to the
produced tokens of already added (actor instance, action)-pairs.
For each processed actor instance, add all schedulable actions.
If adding actions results in different token flows, split the
dataflow configuration and proceed with this procedure for
both. Consequently, when processing a static actor, all its
actions are added to the dataflow configuration, as the
scheduling decision can be made at runtime without affecting
the token flow. If one of the pre-computed clusters is discovered
during iteration, add the entire cluster. For each detected
dataflow configuration, identify the FSM state combinations
and execution rates that prevent internal buffering. Then,
proceed with the procedure for all unknown follow state
combinations.

Precomputing the token flow through the connected
subgraphs of Z that do not contribute to the combined state
makes it possible to reuse these parts for generating every
dataflow configuration. This reduces the effort required for this
step, as enumeration can lead to exponential behavior in the
worst case, which is the main driver of the runtime of the entire
procedure.

B. Composite Actor Generation
The composite actor consists of the ports to connect to Cin

and Cout and the state variables of the original actor instances.
All identifier names in use are checked for possible collisions
and renamed if necessary. The scheduling priorities, schedule
FSM, and actions are generated based on the dataflow
configurations.

1 https://github.com/orcc/orc-apps

A dataflow configuration is converted into an action by
adding the contained actions' operations in token flow order. If
a processed action consumes tokens from Cin or produces
tokens for Cout, the input patterns and output expressions are
added to the generated action. Otherwise they are converted to
variable assignments and added to the action body. Guard
conditions, must be propagatable and are therefore added to the
guard condition of the generated action. For actor instances with
an execution rate greater than one, a for loop is added.

The new FSM is generated by creating a state for each
different schedule FSM state composition present in the
dataflow configurations. The state transitions are generated
based on the following state compositions, which are also stored
for each dataflow configuration.

New scheduling priorities are generated for actions
schedulable in the same FSM state based on the initial priority
definitions. A new priority relation is added between two
generated actions if one of them only consists of incorporated
actions that have a higher or no priority assigned than the
actions incorporated in the other generated action. At least one
priority relation between the incorporated actions has to exist to
create a priority relation between the generated actions.
Transitive priority relations can be omitted.

IV. EVALUATION
The main purpose of actor merging is to improve

performance. To demonstrate the effectiveness of our merging
procedure, we compare the performance of unmodified and
optimized applications, both of which are generated from
dataflow specifications. First, we merge all actors. If a merge is
not feasible due to the criteria, we reduce the set until a feasible
merge is found. This process repeats with the remaining
unmerged actors until no feasible merges can be found. The
merges performed serve only to demonstrate the functionality
of the described approach and may not be optimal.

The selected applications are ZigBee Multitoken, the
Digital Pre-Distortion (DPD), and an adaptive LMS filter from
the Open RVC-CAL Applications repository1, as well as the
Fast Fourier Transformation (FFT)2. The channel size used is
512 in all cases. The preliminary experimental results are shown
in Tab. 1.

The dataflow models were translated to C++ and compiled
using MSVC version 19.40.33813 with the compile options /O2
and /Ob2. Only single-threaded code was created to eliminate
scheduling and multi-core timing effects from our performance
measurements as we focus on actor merging as optimization for
actor clusters mapped to the same core. A Core i7-8550U with
16GiB of RAM running Windows 11 Pro 10.0.22631 was used
for the performance measurements.

The ZigBee example uses FSMs, priorities, and guards in a
dynamic dataflow scenario, but it did not demonstrate

2 http://www.averest.org/

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 2, 2025

4

 TABLE I MEASURED EXECUTION TIMES FOR OPTIMIZED AND UNMODIFIED
MODELS

significant performance improvement. Due to restrictions
imposed by the merge criteria, only a small portion of the model
could be merged. The remaining three examples—LMS, DPD,
and FFT—show performance improvements ranging from 1.4x
to 3.6x. These results demonstrate that merging dataflow actors
is an effective optimization method.

I. RELATED WORK
Unlike the approach presented here, which allows for the

inclusion of dynamic actors in the merging process, most actor
merging approaches rely on SDF. Ali et al. [5] use (C)SDF and
transform it into HSDF. Using a heuristic based on the worst-
case execution time of the actors and their time constraints, they
select and merge actors to reduce the graph. Falk et al. [6]
present an approach in which static nodes are clustered to bind
dataflow nodes to a specific processor in a multiprocessor
system. These clusters are then used to create cluster finite state
machines (FSMs) based on quasi-static schedules. In [7] and
[8], a set of rules is specified to avoid state space enumeration
when generating composite actors with quasi-static schedules.
Janneck [9] introduces a formal actor model and its composition
through composers. Composers generate different composite
actors from the same set of actors. In [10], Janneck introduces
actor machines, which are another representation of dataflow
actors. The composition and computation of SDF schedules of
actor machines is achieved through an abstract simulation that
explores computation paths through the actor machines.
Cedersjö and Janneck [11] use these actor machines and their
composition to build a compiler for RVC-CAL dataflow
networks, translating them into C code. Boutellier et al. [12]
present actor merging for RVC-CAL dataflow networks,
including dynamic actors, by creating a schedule FSM
composed of the FSMs of the merged actors based on a chosen
lead actor. Ersfolk et al. [13] use control tokens to model a
schedule that makes most of its decisions at compile time. The
resulting schedule can be used for actor composition.

II. CONCLUSION AND FUTURE WORK
Our preliminary results indicate that actor merging is a

feasible optimization technique. However, the current approach
is not beneficial in all cases. For instance, the ZigBee example
did not yield any performance improvements despite [14]
showing that improvements are possible. One reason for this is

that the merging criteria are too restrictive, allowing only some
actors to be merged. These criteria are driven by the property of
fixed input and output token rates of actions. Therefore, the
dynamics of actions without buffering tokens in state variables
and using auxiliary actions to cover missing parts are limited.
This is also why an extensive enumeration is required to find
valid dataflow configurations. These two disadvantages make
applying the current approach to a code synthesis toolchain for
automatic optimization difficult. An approach based on
intermediate representation transformations might better lift
these restrictions. With such an approach, no enumeration is
necessary, and the full dynamics of the target language can be
utilized.

REFERENCES
[1] “Information technology — mpeg systems technologies — part 4: Codec

configuration representation,” International Organization for
Standardization, Geneva, CH, Standard, 2017

[2] E. A. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773–801, May 1995

[3] E. A. Lee und D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987

[4] J. Eker and J. Janneck, “CAL language report,” EECS Department,
University of California at Berkeley, Berkeley, California, USA, ERL
Technical Memo UCB/ERL M03/48, December 2003.

[5] H. I. Ali, S. Stuijk, B. Akesson, and L. M. Pinho, “Reducing the
complexity of dataflow graphs using slack-based merging,” ACM
Transactions on Design Automation of Electronic Systems, vol. 22, no. 2,
pp. 24:1–24:22,2017, https://doi.org/10.1145/2956232

[6] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhattacharyya, “A
generalized static data flow clustering algorithm for MPSoC scheduling
of multimedia applications,” in Embedded Software (EMSOFT), L. de
Alfaro and J. Palsberg, Eds. Atlanta, Georgia, USA: ACM, 2008, pp.189–
198.

[7] J. Falk, C. Zebelein, C. Haubelt, and J. Teich, “A rule-based static
dataflow clustering algorithm for efficient embedded software synthesis,”
in Design, Automation and Test in Europe (DATE).Grenoble, France:
IEEE Computer Society, 2011, pp. 521–526.

[8] J. Falk, C. Zebelein, C. Haubelt, and J. Teich, A rule-based quasi-static
scheduling approach for static islands in dynamic dataflow graphs,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 12, no. 3,
pp. 74:1–74:31, 2013

[9] J. W. Janneck, “Actors and their composition,” Formal Aspects of
Computing, vol. 15, pp. 349–369, 2003.

[10] J. W. Janneck, “A machine model for dataflow actors and its
applications,” in Asilomar Conference on Signals, Systems and
Computers (ASILOMAR). Pacific Grove, CA, USA: IEEE Computer
Society, 2011, pp. 756–760.

[11] G. Cedersjö and J. Janneck, “Software code generation for dynamic
dataflow programs,” in International Workshop on Software and
Compilers for Embedded Systems (SCOPES), H. Corporaal and S. Stuijk,
Eds. Sankt Goar, Germany: ACM, 2014, pp. 31–39.

[12] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O.
Silvén, “Actor merging for dataflow process networks,” IEEE
Transactions on Signal Processing, vol. 63, no. 10, pp. 2496–2508, May
2015

[13] J. Ersfolk, G. Roquier, J. Lilius, and M. Mattavelli, “Modeling control
tokens for composition of CAL actors,” in Design and Architectures for
Signal and Image Processing (DASIP), P. Meloni and C. Jégo, Eds.
Cagliari, Italy: IEEE Computer Society, 2013, pp. 71–78

[14] J. Boutellier, A. Ghazi, O. Silven, und J. Ersfolk, „High-performance
programs by source-level merging of RVC-CAL dataflow actors“, in
SiPS 2013 Proceedings, 2013, S. 360–365.

Benchmark
Runtime [ms]

Speed Up
Unmodified Optimized

ZigBee 15063 15042 0

LMS 2386 979 1.44

DPD 2449 871 1.81

FFT 14390 3070 3.69

	I. Introduction
	A. Cal Actor Language
	B. Contribution

	II. Actor Merging Criteria
	III. Actor Merging Methodology
	A. Dataflow Configuration Enumeration
	B. Composite Actor Generation

	IV. Evaluation
	Table I Measured execution times for optimized and unmodified models

	I. Related Work
	II. Conclusion and Future Work
	References

