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Abstract—The dataflow model of computation is well-established 
in many application areas, including image encoding and 
decoding. This model consists of actors that process data and 
communication channels that transmit data between actors. 
However, when mapping these models to the systems on which 
they will be executed and synthesizing the necessary code, the 
number of actors often exceeds the number of execution units by a 
significant amount. This results in increased overhead for data 
buffering and communication between actors. To address this 
issue and adapt the model to the target execution system, we 
propose a technique that combines static and dynamic actors 
defined in the CAL actor language. This technique is based on 
actors’ composition within the dataflow network and creates a new 
composite CAL actor. When merging actors, we consider the 
actions of the actors, including their CAL scheduling mechanisms, 
finite state machines, priorities, and guards. We derive conditions 
under which connected actors can be merged to form a new CAL-
compliant actor. Preliminary experiments show performance 
improvements of up to 3.6x compared to unoptimized code. 

Keywords — Dataflow Model of Computation, Composition, 
Actor Merge, Model Optimization 

I.  INTRODUCTION 
Using models is a well-established method for managing the 

inherent complexity of large systems. Such models can be 
created at a higher level of abstraction, which simplifies the 
development process. With model-based approaches, software 
is designed modularly rather than being developed directly as a 
target-specific implementation. In particular, the dataflow 
model of computation (MoC) offers these benefits and enables 
the separation of different components and the utilization of 
parallelism. This model is based on directed graphs, where the 
edges represent unidirectional, point-to-point communication 
channels of infinite size that transmit tokens, and the nodes 
represent data-processing elements, called "actors". An actor 
can contain several actions, that it can execute, called "firing",  
based on the availability of tokens, token values, the actions' 
scheduling conditions, or by randomly selecting one of the 
actions. An action can consume an arbitrary but fixed number 
of tokens from the input channels and produce an arbitrary but 
fixed number of tokens for the output channels. The number of 
tokens consumed and produced does not need to be the same 
for each channel and can be zero. 

Due to the modular nature and visualization capabilities of 
dataflow models, they are well suited to embedded software 
design, such as signal or image processing. For example, 

MPEG codecs are dataflow models [1]. However, when it 
comes to code synthesis and mapping these models to real 
execution units, their modular structure may not align with the 
chosen hardware architecture. In particular, a model may have 
many more actors than processing elements. Although the 
communication channels allow for the distribution of actors 
across processing elements, they can also cause significant 
performance overhead. Mapping actors that exchange a lot of 
data to the same processing element can reduce this effect but 
cannot eliminate it completely. Consequently, methods are 
required to merge actors executed by the same processing 
element for the synthesis of efficient software. 

Two popular classes of dataflow models are Dataflow 
Process Networks (DPNs) [2] and Static Dataflow (SDF) [3]. 
Unlike SDF, which has constant token rates across all firings, 
DPNs do not constrain their actors' (or processes') behavior. 
Each actor can consume and produce different numbers of 
tokens at any given time, a property known as dynamic 
behavior. Since the token flow is unknown at compile time, 
scheduling dynamic dataflow actors necessitates runtime 
scheduling. 

A. Cal Actor Language 
The Cal Actor Language (CAL) [4] is a domain-specific 

language for specifying dataflow actors. It provides a 
comprehensive set of features for this purpose. Here, the focus 
is on a popular subset of CAL that is sufficient for specifying 
dataflow actors that conform to the basic definitions of the 
aforementioned dataflow models. Fig. 1 shows an example of a 
CAL dataflow actor. 

An actor can be instantiated multiple times within the same 
model. These instances are referred to as an actor instances. A 
defined actor has a certain number of input and output ports 
separated by “==>” (line 1); these ports are connected to 
communication channels within the overall model definition. 
Actions can access these ports, such as action a (line 2), which 
reads a token from input port x (input pattern) and writes a token 
to each of the output ports (output expression). An action can 
consume and produce multiple tokens. For the sake of brevity, 
action bodies that can perform more complex operations known 
from common programming languages are omitted here. 
Guards (line 5) define additional conditions that must be met 
for the corresponding action to fire. The schedule FSM (lines 5-
9) and priorities (line 10) can further specify the scheduling for 
the given actor. The FSM defines the initial state (line 5) –s_one 
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– and the state transitions. Each state transition lists the actions 
that can be fired in the given state and cause that state transition. 
Actions that are not listed cannot be fired in this state. Priorities 
define which action shall be fired in case several are ready to be 
fired, e.g., action a can only be fired if the scheduling conditions 
for action b are not fulfilled. 

Consequently, in addition to the schedule FSM, priorities 
and guards must be considered for merging, otherwise the 
functionality of the actors might be lost or altered. 

B. Contribution 
In this paper, we present a methodology for merging CAL 

actors based on their composition in the dataflow model with 
the resulting actors again specified in CAL (Section III). This 
methodology considers guards, priorities, and the schedule 
FSM during merging. The generation of new CAL-compliant 
actors has the benefit of a seamless integration into existing 
toolchains for code synthesis. Since actions consume and 
produce fixed numbers of tokens and are bound to certain 
scheduling constraints, we derive concrete criteria for a 
successful (correct) CAL actor merging (Section II). In Section 
IV, we show preliminary results of executions time 
improvements achieved actor merging. 

II. ACTOR MERGING CRITERIA 
Merging dataflow actors, especially dynamic ones, is not 

always possible in an arbitrary manner. In dynamic dataflow 
models with data-dependent actors, such as switches, the token 
flow is not known in advance, so it is impossible to determine 
the token rates. 

In the following, we define criteria that the actor instances 
𝛼𝛼𝑖𝑖 in a connected subgraph of actor instances 𝑍𝑍 must meet in 
order to be merged into a single composite actor. For the 
purpose of this analysis, we define the set of channels connected 
to actors αi ∈ Z as 𝐶𝐶, the set of channels with the source actor 
not in 𝑍𝑍 and the sink actor in 𝑍𝑍 as 𝐶𝐶𝑖𝑖𝑖𝑖, and the set of channels 
with the source actor in 𝑍𝑍 and the sink actor not in 𝑍𝑍 as Cout. 
Furthermore, we use the symbols concj(ai) and prodck(ai) to 
denote the consumption and production rate of an action ai ∈ αi 
for the corresponding channels cj, ck ∈ C. 

 

Criterion 1 (Internal Buffering): The merging of actors 
must not buffer tokens within the composite actor across 
different firings. For each channel ci between actors αi,αj ∈ Z 
each combination of actions of ai ∈ αi and aj ∈ αj fired in 
sequence must satisfy x ∗ prodci�aj� = y ∗ conci(ai) with 
x, y ∈ N. 

 
If buffering of tokens within the composite actor is 

permitted, the boundedness of this buffering must be 
guaranteed. Additionally, during scheduling, the buffered 
tokens must be considered such that consumption of these 
tokens takes precedence over generation of new tokens for the 
same internal buffer. Therefore, buffering is avoided to reduce 
the complexity of the actor merging process and the resulting 
actor. The token rates of two adjacent actors to be merged must 
therefore match, and multiples are allowed. For multiples, loops 
must be added. 

 
Criterion 2 (Scheduling Conditions): The guard conditions 

of the actions must be propagatable. A guard condition is 
propagatable, if it depends only on tokens consumed from 
channels Cin or internal state variables.  

 
This criterion simplifies the generation of guard conditions 

for composite actors. Generating a guard condition that covers 
the actions of two actors whose guard conditions depend on 
each other's input tokens would involve propagating the guard 
condition back to the actor that produces the token. This is done 
by replacing the token value with the calculations that lead to 
the production of the token. Therefore, generating a guard 
condition for a large set of actors is not feasible since, in the 
worst case, the guard conditions of the composite actor already 
include most of its behavior, and it is not possible to consume 
or produce additional tokens based on dynamic behavior. 
Therefore, this criterion does not apply to static actors, which 
can make a scheduling decision without altering the dynamics. 

 
Criterion 3 (Minimal Schedulability): Any token numbers 

in Cin that enables the actors in 𝑍𝑍 to produce tokens for Cout 
must also produce the same behavior in the composite actor. 

 
If the actors in Z can produce tokens for a given set of input 

tokens in Cin, but the composite actor cannot, then other actors 
may require tokens that were previously produced by actors in 
Z to continue processing. However, the new composite actor 
may be unable to produce these tokens, for example, in the case 
of feedback cycles. If such a situation occurs, the merge could 
render the previously functional network unusable. 

III. ACTOR MERGING METHODOLOGY 
The actor merging process consists of four steps: dataflow 

configuration enumeration, merge criteria checking, actor 
generation and network adjustment. The merge criteria cannot 
be checked in the first step because they only apply to valid 
token flows through Z. Therefore, they must first be detected. 

1    actor example()   uint in ==> uint out1, uint out2 : 
2   a: action in:[x] ==> out1:[x+1], out2:[x] end 
3   b: action in:[x] ==> out1:[x+2], out2:[x+1] 
4    guard x > 5 end 
5  schedule fsm s_one : 
6   s_one ( a ) --> s_two; 
7   s_two ( a ) --> s_one; 
8   s_two ( b ) --> s_two; 
9  end 
10  priority  b > a;  end 
11  end 

Figure 1 CAL Example 
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After the enumeration step, the merge criteria are checked. Only 
then can the actual actor merging take place. This includes 
generating the composite actor, which includes a new schedule, 
finite state machine (FSM), priorities, and actions with guards. 
The final step is replacing the merged actors with the composite 
actor in the original model. 

A. Dataflow Configuration Enumeration 
A dataflow configuration is a relation between consumed 

input tokens from Cin and produced output tokens for Cout and 
the corresponding (actor instance, action)-pairs and their 
execution rate, executed to satisfy the input-output relation with 
respect to the actors internal scheduling states. Consequently, a 
dataflow configuration contains the necessary information to 
generate a new action, including the current and next FSM 
states in which these actions can be executed in. 

The enumeration process involves first identifying the 
largest connected subgraphs of Z that do not contain actors with 
FSMs. These subgraphs are then pre-computed to facilitate the 
subsequent enumeration of all possible token flows. The actual 
enumeration starts with the initial state of all the actor instances, 
which are used as the starting point of the enumeration. Based 
on this state combination, all schedulable actions that consume 
only tokens from 𝐶𝐶𝑖𝑖𝑖𝑖 are determined. For each valid 
combination of them a new dataflow configuration is created by 
iterating through 𝑍𝑍 in token flow order with respect to the 
produced tokens of already added (actor instance, action)-pairs. 
For each processed actor instance, add all schedulable actions. 
If adding actions results in different token flows, split the 
dataflow configuration and proceed with this procedure for 
both. Consequently, when processing a static actor, all its 
actions are added to the dataflow configuration, as the 
scheduling decision can be made at runtime without affecting 
the token flow. If one of the pre-computed clusters is discovered 
during iteration, add the entire cluster. For each detected 
dataflow configuration, identify the FSM state combinations 
and execution rates that prevent internal buffering. Then, 
proceed with the procedure for all unknown follow state 
combinations. 

Precomputing the token flow through the connected 
subgraphs of Z that do not contribute to the combined state 
makes it possible to reuse these parts for generating every 
dataflow configuration. This reduces the effort required for this 
step, as enumeration can lead to exponential behavior in the 
worst case, which is the main driver of the runtime of the entire 
procedure. 

B. Composite Actor Generation 
The composite actor consists of the ports to connect to Cin 

and Cout and the state variables of the original actor instances. 
All identifier names in use are checked for possible collisions 
and renamed if necessary. The scheduling priorities, schedule 
FSM, and actions are generated based on the dataflow 
configurations. 

 
1 https://github.com/orcc/orc-apps 

A dataflow configuration is converted into an action by 
adding the contained actions' operations in token flow order. If 
a processed action consumes tokens from Cin or produces 
tokens for Cout, the input patterns and output expressions are 
added to the generated action. Otherwise they are converted to 
variable assignments and added to the action body. Guard 
conditions, must be propagatable and are therefore added to the 
guard condition of the generated action. For actor instances with 
an execution rate greater than one, a for loop is added. 

The new FSM is generated by creating a state for each 
different schedule FSM state composition present in the 
dataflow configurations. The state transitions are generated 
based on the following state compositions, which are also stored 
for each dataflow configuration. 

New scheduling priorities are generated for actions 
schedulable in the same FSM state based on the initial priority 
definitions. A new priority relation is added between two 
generated actions if one of them only consists of incorporated 
actions that have a higher or no priority assigned than the 
actions incorporated in the other generated action. At least one 
priority relation between the incorporated actions has to exist to 
create a priority relation between the generated actions. 
Transitive priority relations can be omitted. 

IV. EVALUATION 
The main purpose of actor merging is to improve 

performance. To demonstrate the effectiveness of our merging 
procedure, we compare the performance of unmodified and 
optimized applications, both of which are generated from 
dataflow specifications. First, we merge all actors. If a merge is 
not feasible due to the criteria, we reduce the set until a feasible 
merge is found. This process repeats with the remaining 
unmerged actors until no feasible merges can be found. The 
merges performed serve only to demonstrate the functionality 
of the described approach and may not be optimal. 

The selected applications are ZigBee Multitoken, the 
Digital Pre-Distortion (DPD), and an adaptive LMS filter from 
the Open RVC-CAL Applications repository1, as well as the 
Fast Fourier Transformation (FFT)2. The channel size used is 
512 in all cases. The preliminary experimental results are shown 
in Tab. 1. 

The dataflow models were translated to C++ and compiled 
using MSVC version 19.40.33813 with the compile options /O2 
and /Ob2. Only single-threaded code was created to eliminate 
scheduling and multi-core timing effects from our performance 
measurements as we focus on actor merging as optimization for 
actor clusters mapped to the same core. A Core i7-8550U with 
16GiB of RAM running Windows 11 Pro 10.0.22631 was used 
for the performance measurements. 

The ZigBee example uses FSMs, priorities, and guards in a 
dynamic dataflow scenario, but it did not demonstrate  

2 http://www.averest.org/ 
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 TABLE I MEASURED EXECUTION TIMES FOR OPTIMIZED AND UNMODIFIED 
MODELS  

 
significant performance improvement. Due to restrictions 
imposed by the merge criteria, only a small portion of the model 
could be merged. The remaining three examples—LMS, DPD, 
and FFT—show performance improvements ranging from 1.4x 
to 3.6x. These results demonstrate that merging dataflow actors 
is an effective optimization method. 

I.  RELATED WORK 
Unlike the approach presented here, which allows for the 

inclusion of dynamic actors in the merging process, most actor 
merging approaches rely on SDF. Ali et al. [5] use (C)SDF and 
transform it into HSDF. Using a heuristic based on the worst-
case execution time of the actors and their time constraints, they 
select and merge actors to reduce the graph. Falk et al. [6] 
present an approach in which static nodes are clustered to bind 
dataflow nodes to a specific processor in a multiprocessor 
system. These clusters are then used to create cluster finite state 
machines (FSMs) based on quasi-static schedules. In [7] and 
[8], a set of rules is specified to avoid state space enumeration 
when generating composite actors with quasi-static schedules. 
Janneck [9] introduces a formal actor model and its composition 
through composers. Composers generate different composite 
actors from the same set of actors. In [10], Janneck introduces 
actor machines, which are another representation of dataflow 
actors. The composition and computation of SDF schedules of 
actor machines is achieved through an abstract simulation that 
explores computation paths through the actor machines. 
Cedersjö and Janneck [11] use these actor machines and their 
composition to build a compiler for RVC-CAL dataflow 
networks, translating them into C code. Boutellier et al. [12] 
present actor merging for RVC-CAL dataflow networks, 
including dynamic actors, by creating a schedule FSM 
composed of the FSMs of the merged actors based on a chosen 
lead actor. Ersfolk et al. [13] use control tokens to model a 
schedule that makes most of its decisions at compile time. The 
resulting schedule can be used for actor composition. 

II. CONCLUSION AND FUTURE WORK 
Our preliminary results indicate that actor merging is a 

feasible optimization technique. However, the current approach 
is not beneficial in all cases. For instance, the ZigBee example 
did not yield any performance improvements despite [14] 
showing that improvements are possible. One reason for this is 

that the merging criteria are too restrictive, allowing only some 
actors to be merged. These criteria are driven by the property of 
fixed input and output token rates of actions. Therefore, the 
dynamics of actions without buffering tokens in state variables 
and using auxiliary actions to cover missing parts are limited. 
This is also why an extensive enumeration is required to find 
valid dataflow configurations. These two disadvantages make 
applying the current approach to a code synthesis toolchain for 
automatic optimization difficult. An approach based on 
intermediate representation transformations might better lift 
these restrictions. With such an approach, no enumeration is 
necessary, and the full dynamics of the target language can be 
utilized. 
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Benchmark 
Runtime [ms] 

Speed Up 
Unmodified Optimized 

ZigBee 15063 15042 0 

LMS 2386 979 1.44 

DPD 2449 871 1.81 

FFT 14390 3070 3.69 
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