Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Queryable Microarchitecture Knowledge Base using

Retrieval-Augmented Generation

Vignesh Manjunath

Graz University of Technology
Graz, Austria
vignesh.manjunath@student.tugraz.at

Abstract—Microarchitecture documentation, such as datasheets
and user manuals, is indispensable for embedded software
development. However, the extensive volume and complexity of
these documents render information retrieval a time- and effort-
intensive task. To address this challenge, we propose a framework
for constructing a queryable knowledge base on microarchitecture
documentation, leveraging Retrieval-Augmented Generation
(RAG) and Large Language Models (LLMs). As a proof of
concept, we implement a knowledge base on AURIX TriCore
TC27x documentation and evaluate this knowledge base by
querying it with a curated set of questions. The generated
responses are evaluated by measuring their semantic similarity to
reference answers. In our evaluation, we assess the performance
of six LLMs with different model architectures and sizes. The
results show that the smaller models (with 8 billion and 3 billion
parameters) achieve similarity scores comparable to those of the
larger model (with 72 billion parameters). These initial findings
demonstrate the robustness of our framework for creating
queryable knowledge bases and the potential of smaller LLMs for
efficient information retrieval in this context.

Keywords-Embedded systems, information extraction, retrieval-
augmented generation

1. INTRODUCTION

Embedded software development relies on microarchitecture
documentation, including datasheets and user manuals, to
implement device drivers and various software functionalities.
These documents contain information on, e.g., peripheral
configuration, memory management, and internal
microcontroller behavior. However, finding relevant
information is a time-consuming and effort-intensive task since
these documents are often hundreds or even thousands of pages
long. Moreover, the required information may be dispersed
across various sections within a single document or distributed
across multiple documents, making it challenging to obtain
comprehensive information efficiently. For instance, peripheral
configuration information is often fragmented across the
datasheet, application notes, and errata documents.

To retrieve information quickly and efficiently, we propose
a framework to build a queryable knowledge base on
microarchitecture documentation. The main idea is to transform
the target microarchitecture documentation into a structured

Manuscript received May 20, 2025; revised July 31, 2025; accepted
July 25, 2025. Published September 2, 2025.

Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025

Paper category: Short

DOI: doi.org/10.64552/wipiec.v11i1.95

Jesus Pestana

Pro2Future GmbH
Graz, Austria
jesus.pestana@pro2future.at

43

Tobias Scheipel, Marcel Baunach

Graz University of Technology
Graz, Austria
{tobias.scheipel, baunach}@tugraz.at

knowledge base, which is subsequently integrated with an
information retrieval process involving Retrieval-Augmented
Generation (RAG) [1] and a Large Language Model (LLM) [2].
By integrating the knowledge base with the information retrieval
process, the framework facilitates querying for Open-Domain
Question Answering (ODQA) tasks. In addition, we implement
a filtering concept to support document-specific information
retrieval.

As a proof of concept and demonstration of our framework,
we build a queryable knowledge base on AURIX TriCore
TC27x [3] documentation. We evaluate the knowledge base
using a set of questions and reference answers. First, we query
the knowledge base with the questions and record the generated
responses. Next, we compute the semantic similarity between
generated responses and their corresponding reference answers.
This similarity score reflects the quality of the responses in terms
of their relevance and alignment with the reference answers.

The primary focus of this paper is on the development of the
proposed framework and a preliminary evaluation to assess the
performance of the framework. The framework currently uses a
simple naive RAG pipeline with a single retriever to retrieve
information from the knowledge base. Further refinement of the
RAG pipeline and extensive evaluation of the approach are
currently a work-in-progress and are out of scope for this paper.

The rest of the paper is organized as follows: Section II
describes the methodology of the proposed framework. Section
III presents the current evaluation approach and the preliminary
results. Section IV discusses the related work, and Section V
concludes the paper with a brief outlook on future work.

IL.

The naive RAG pipeline in our framework consists of two
primary components: a retriever, which is responsible for
identifying and extracting the most relevant information from
the knowledge base, and a generator (an LLM), which
formulates a coherent and contextually appropriate response to
a given user query based on the extracted information. In this
section, we first explain the process of creating a structured
knowledge base using the target microarchitecture
documentation, followed by the process of information retrieval
and response generation.

METHODOLOGY

https://doi.org/10.64552/wipiec.v11i1.95

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

© Embedding) Context Prompt
model Retrieved | g) : @) LLM Response
User filter criteria Chunks Generation

Knowledge
base

Retrieval

‘ @—> Process ﬂow|

Figure 1: Information retrieval and response generation process.

A. Knowledge Base Creation

Microarchitecture documents are typically PDF files from
hardware vendors. In general, these PDFs have complex table
structures, images, and non-pertinent information, such as
headers and footers. To make the information in the PDFs
suitable for processing by an LLM, we first convert these PDFs
into Markdown format using the PyPDF2 [4] Python library.
Next, we remove non-pertinent information, translate figures
into corresponding textual descriptions, and format complex
table structures. Subsequently, we add metadata to every
document, including details such as titles, versions, and tags.

Depending on the input PDFs, these Markdown files can be
lengthy and may exceed the context length (i.e., the amount of
text, in tokens, the model can process) of an LLM. Hence, we
split the Markdown files into equally sized chunks based on
word count. Next, we link each chunk with its corresponding
document metadata and encode these chunks into dense vector
representations (referred to as ‘embeddings’) using an
embedding model (e.g., all-MiniLM-L6-v2 [5]). Lastly, we
build and associate indexes for these embeddings using the
FAISS library [6] to facilitate faster retrieval of document
chunks relevant to a user query. The indexing step completes the
creation of the knowledge base.

B. Information Retrieval and Response Generation

The information retrieval and response generation process
begins with a user query and optional filter criteria and involves
the sequence of steps (denoted by (Nr)) illustrated in Figure 1.

In steps (D and), we filter the knowledge base and extract
the embeddings corresponding to the document tag(s) specified
by the user filter criteria. The resulting filtered knowledge base
is then used to retrieve information relevant to the user query. If
no filter criteria are specified, then the information is retrieved
from the entire knowledge base.

In step 3), we encode the user query using the embedding
model and then use the FAISS library to perform a similarity
search on the knowledge base in step @). The similarity search
retrieves indexes of the most similar embeddings from the
knowledge base, and these retrieved indexes are used to obtain
the corresponding document chunks in step ®&. Steps (3 through
® represent the information retrieval process.

In step ®), the retrieved document chunks are concatenated
as context. The context is then integrated with the user query and
the rules for generation as a prompt in step (). The rules instruct
the LLM to generate a response based only on the provided

44

context. The LLM uses the information contained in the prompt
to generate the final response to the user query in step (8. Steps
© through (® correspond to the response generation process.

III. PROOF OF CONCEPT AND EVALUATION

A. Evaluation Setup

To demonstrate and evaluate our framework, we implement
a queryable knowledge base on a set of documents specific to
the AURIX TriCore TC27x architecture. These documents
include the core architecture user manuals, Instruction Set
Architecture (ISA) description, and errata. We convert these
documents into Markdown format and split them into chunks of
100 words each. Next, we encode these chunks into embeddings
and then build and associate indexes with these embeddings. The
resulting knowledge base is evaluated through semantic
similarity analysis.

In our evaluation, we use Copilot and Nemotron [7] LLMs
to generate a test dataset using the TC27x documents. The
generated test dataset comprises 326 question-answer pairs, and
we reviewed 25% of them to check their factual correctness. The
answers in the test dataset serve as reference answers for
evaluating the quality of the generated responses. Next, we
integrate the TC27x knowledge base with the RAG pipeline and
use the test dataset to benchmark six LLMs with different model
architectures and sizes. Table 1 lists the LLMs under evaluation,
and their short names represent the LLM family and the number
of model parameters.

We conduct our evaluation by querying the LLM with the
test questions and recording the generated responses. This
evaluation is systematically repeated for all the LLMs under
evaluation, and their responses are recorded. The evaluation is
performed on a system equipped with three NVIDIA A100
80GB GPUs [10].

In addition to the response quality, we also measure the mean
inference time for each LLM to assess its computational
efficiency. As shown in Table 1, larger models exhibit higher
inference times (e.g., Nemotron-70B at 28.25 s), while smaller
models respond significantly faster (e.g., Llama3.2-1B at
1.70 s), illustrating the trade-off between model size and
computational cost. In contrast, Rl _DQwen 7B, although
smaller than Nemotron 70B, exhibits a comparable inference
time (27.34 s). This extended processing time is likely attributed
to its chain-of-thought reasoning approach, which requires
longer reasoning chains and tracking multiple logical branches,
thereby increasing the computational effort required.

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

TABLE 1: LLMS UNDER EVALUATION.

LLM short name Number of model M(.)del size Mean inference
parameters (GiB) time (seconds)

Llama3.2_1B [9] 1.23 billion 231 1.70
Llama3.2_3B [9] 3.21 billion 5.98 7.42
Qwen2.5 3B [8] 3.09 billion 5.76 5.66
R1_DQwen 7B [13] |7.62 billion 14.19 27.34
Llama3.1_8B [9] 8.03 billion 14.96 6.24
Nemotron_70B [7] 70.60 billion 131.5 28.25

B. Semantic Similarity Score Computation

In Natural Language Processing (NLP), semantic similarity
scores are used to measure how closely two texts are aligned in
meaning and context. In our work, we use an ensemble approach
to compute the similarity score between the responses generated
by different LLMs and their respective reference answers. The
ensemble approach leverages two popular NLP metrics:
BERTScore-F1 [11] and SBERT similarity score [12].

BERTScore-F1 measures how similar individual tokens are
between two sentences by considering their meaning and
context, while the SBERT similarity score compares the overall
meaning of two sentences by transforming them into vector
representations and measuring their closeness. Both scores range
from -1 to +1, with values closer to +1 indicating a higher degree
of similarity.

For each response generated by the LLMs under evaluation,
we calculate the corresponding similarity scores, compute their
means, and present the results in Table 2. The results indicate
that the mean similarity scores remain consistent across both
evaluation metrics. The model R1_DQwen_7B achieves the
lowest mean similarity scores of all the LLMs under evaluation.
This lower performance can be primarily due to two factors: (1)
the inclusion of chain-of-thought reasoning in its responses,
which introduces additional content, and (2) deviations in final
answers, thereby reducing alignment with the expected outputs.

In contrast, most of the other smaller models achieve
similarity scores closely aligned with those of the larger
Nemotron_70B model. In particular, the smaller Llama3.1_8B
model slightly outperforms the larger Nemotron 70B model,
achieving the highest similarity score of 0.67 (highlighted using
bold text in Table 2). This finding demonstrates the potential of
smaller LLMs for effective information retrieval.

TABLE 2: MEAN SIMILARITY SCORE.

LLM short name | Mean BERT | Mean SBERT
score-F1 similarity score
Llama3.2 1B 0.57 0.61
Llama3.2 3B 0.65 0.65
Qwen2.5 3B 0.64 0.66
R1_DQwen 7B 0.50 0.49
Llama3.1_8B 0.67 0.67
Nemotron_70B 0.63 0.65

45

The similarity scores across models remain moderately close
to +1, indicating a relatively high degree of similarity between
the generated responses and their corresponding reference
answers. This consistency highlights the robustness of our
knowledge base framework and the computational efficiency of
some smaller models, which are capable of generating
contextually relevant outputs while significantly reducing GPU
memory consumption and computational overhead compared to
the larger Nemotron 70B model.

IV. RELATED WORK

In recent years, several approaches have leveraged various
RAG architectures to address a broad range of tasks. Surveys
such as [14-16] provide comprehensive overviews of RAG-
based methods across multiple domains and applications,
including domain-specific information retrieval, software safety
analysis, and code generation. This section focuses specifically
on existing approaches that employ RAG for domain-specific
information retrieval.

Similar to our work, AeroQuery [17] and IDAS [18] use a
naive RAG pipeline with vector similarity search to extract
information from aerospace standards (e.g., DO-178C) and
vehicle user manuals, respectively. In contrast, Kieu et al. [19]
employ a hybrid retrieval approach that combines keyword-
based and vector-based search results to enhance the
explainability of AUTOSAR specifications. However, these
approaches are evaluated on relatively small-scale datasets,
typically involving only around 20 queries, which limits the
generalizability and robustness of their findings.

Simoni et al. [20] introduce a multi-retriever RAG system
that retrieves both textual information and code to answer
cybersecurity-related queries. Similarly, Balu et al. [21] use
multiple retrievers (one per document) to extract information
from automotive standards. While both approaches reduce
redundancy and summarize outputs from individual retrievers,
the aggregated information can exceed the LLM’s context
length, potentially hindering response quality.

Some approaches [22-25] involve Graph-RAG, which
retrieves relevant information from graph structures rather than
isolated textual chunks. CyKG-RAG [22] applies this to
cybersecurity by leveraging domain-specific knowledge graphs
for multi-hop Q&A tasks. HSG-RAG [23] constructs
hierarchical semantic knowledge graphs to improve retrieval
from embedded systems documentation (such as API reference
manuals). Liu et al. [24] use Graph-RAG to retrieve information
from automotive software specifications, and Ojima et al. [25]
extract information from event graphs representing automotive
failure incidents. Although these methods demonstrate
improved contextual retrieval, they often encounter challenges
related to traceability and the limited context length of LLMs,
particularly when aggregating information from numerous graph
nodes or documents.

In contrast, our approach adopts a naive RAG pipeline
augmented with a pre-retrieval filtering mechanism, which helps
mitigate the context length limitations commonly encountered
in graph-based or multi-retriever RAG systems. This filtering
strategy enhances retrieval quality by selecting document
chunks based on the user filter criteria, thereby improving the
relevance of the retrieved information with respect to the user

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

query. Furthermore, our preliminary evaluation results indicate
that smaller LLMs can achieve performance levels comparable
to their larger counterparts, thereby highlighting the feasibility
of resource-efficient deployments without significant loss in
retrieval quality.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a framework for building a
queryable knowledge base on microarchitecture documentation
using RAG with an LLM. Our proof-of-concept based on TC27x
documentation demonstrates the feasibility of this approach for
quick and efficient information retrieval in embedded software
development. As a preliminary evaluation, we used semantic
similarity metrics to assess the performance of six LLMs with
different model architectures and sizes. The results show that
smaller models, including those with 8 billion and 3 billion
parameters, can achieve similarity scores comparable to those of
a significantly larger model with 72 billion parameters. These
findings highlight the robustness of our framework and the
potential of smaller LLMs as resource-efficient alternatives for
domain-specific information retrieval tasks.

While the preliminary evaluation demonstrates the
feasibility of our approach, further work is required to enhance
both the evaluation methodology and the underlying system. As
future work, we plan to evaluate the factual correctness of the
generated responses. This will involve developing or integrating
more rigorous evaluation metrics and possibly including human-
in-the-loop assessments.

In addition, we intend to refine the current naive RAG
pipeline to improve retrieval quality. This includes optimizing
document chunking strategies, enhancing query formulation,
and exploring more advanced search and ranking strategies.
These improvements are expected to increase the precision and
relevance of retrieved content, thereby improving the robustness
of our knowledge base framework.

Another important step in our future work is the
implementation of an explicit traceability mechanism. Although
naive RAG inherently allows tracking of generated responses
back to the retrieved chunks, we intend to formalize this process
by extracting and verifying the relevance of each chunk with
respect to the final answer. This will enable more explainable
and reliable responses, thereby increasing user trust in the
knowledge base framework.

Finally, we plan to fully automate the conversion of source
PDFs into structured markdown files. This includes extracting
key elements like text, headings, and tables to streamline content
preparation. Automating this step will significantly reduce
manual preprocessing effort and ensure consistency and
scalability in building and updating knowledge bases.

ACKNOWLEDGMENT

This work has been supported by the BMIMI, BMWET, and
FFG, Contract No. 911655: "Pro?Future 11", Graz University of
Technology (TU Graz), and Elektrobit Automotive GmbH.

46

(1]

—
—_
(=1

=

[11]
[12]

[13

—

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24

[}

[25]

REFERENCES

P. Lewis et al.,, ‘Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks’, in Advances in Neural Information Processing
Systems, 2020, vol. 33.

V. Ashish et al., ‘Attention is all you need’, Advances in neural
information processing systems, vol. 30, p. I, 2017.

‘AURIX TC27x D-Step 32-bit Single-Chip Microcontroller User Manual
v2.2’°, Infineon Technologies AG.

‘PyPDF2’. [Online]. Available: https://pypdf2.readthedocs.io/en/3.x/
‘Sentence-Transformer Model: all-MiniLM-L6-v2’. [Online]. Available:
https://huggingface.co/sentence-transformers/all-MiniL M-L6-v2

M. Douze et al., ‘The FAISS library’, arXiv preprint arXiv:2401. 08281,
2024.

W. Zhilin et al., ‘HelpSteer2-Preference: Complementing Ratings with
Preferences’, arXiv [cs.LG]. 2024.

Q. Team, ‘Qwen2.5: A Party of Foundation Models’. Sep-2024.
Available: https:/qwenlm.github.io/blog/qwen2.5/

A. Grattafiori et al,, ‘The llama 3 herd of models’, arXiv preprint
arXiv:2407. 21783, 2024.

Nvidia, ‘LLM Benchmarking: Fundamental Concepts’. [Online].
Available: https://developer.nvidia.com/blog/llm-benchmarking-

fundamental-concepts/.

T. Zhang and Others, ‘Bertscore: Evaluating text generation with bert’,
arXiv preprint arXiv:1904. 09675, 2019.

N. Reimers and I. Gurevych, ‘Sentence-bert: Sentence embeddings using
siamese bert-networks’, arXiv preprint arXiv:1908. 10084, 2019.
DeepSeek-Al, ‘DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning’, arXiv [cs.CL]. 2025.

M. Arslan et al., ‘A Survey on RAG with LLMs’, Procedia Computer
Science, vol. 246, pp. 3781-3790, 2024.

Y. Gao et al, ‘Retrieval-augmented generation for Large Language
Models: A survey’, arXiv preprint arXiv:2312. 10997, vol. 2, p. 1, 2023.

R. Chen et al, ‘Retrieval-Augmented Generation with Knowledge
Graphs: A Survey’, in Computer Science Undergradaute Conference
2025@ XJTU.

S. Yadav, ‘AeroQuery RAG and LLM for Aerospace Query in Designs,
Development, Standards, Certifications’, in 2024 IEEE International
Conference on Electronics, Computing and Communication Technologies
(CONECCT), 2024, pp. 1-6.

B. Hernandez-Salinas et al., ‘IDAS: Intelligent Driving Assistance
System using RAG’, IEEE Open Journal of Vehicular Technology, 2024.

K. Kieu et al., ‘Empowering Automotive Software Development with
LLM-RAG Integration’, 2024.

M. Simoni et al., ‘Morse: Bridging the gap in cybersecurity expertise with
retrieval augmented generation’, in Proceedings of the 40th
ACM/SIGAPP Symposium on Applied Computing, 2025, pp. 1213—
1222.

B. V. Balu et al., ‘Towards Automated Safety Requirements Derivation
Using Agent-based RAG’, arXiv preprint arXiv:2504. 11243, 2025.

K. Kurniawan et al., ‘CyKG-RAG: Towards knowledge-graph enhanced
retrieval augmented generation for cybersecurity’, 2024.

Z. Lu et al., ‘HSG-RAG: Hierarchical Knowledge Base Construction for
Embedded System Development’, ACM Transactions on Design
Automation of Electronic Systems.

F. Liu et al., ‘Enhancing Automotive PDF Chatbots: A Graph RAG
Approach with Custom Function Calling for Locally Deployed Ollama
Models’, in Proceedings of the 2024 International Conference on
Artificial Intelligence, Digital Media Technology and Interaction Design,
2024, pp. 6-13.

Y. Ojima et al,, ‘Knowledge Management for Automobile Failure
Analysis Using Graph RAG’, in 2024 IEEE International Conference on
Big Data (BigData), 2024, pp. 6624—663

https://pypdf2.readthedocs.io/en/3.x/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://qwenlm.github.io/blog/qwen2.5/
https://developer.nvidia.com/blog/llm-benchmarking-fundamental-concepts/
https://developer.nvidia.com/blog/llm-benchmarking-fundamental-concepts/

